Question #bc5a2

1 Answer
Nov 15, 2017

g(x)=sqrt(x) and g(x)=-sqrt(x)

Explanation:

we take

(gof)(x)=abs(x+1)

f(x)=x^2+2x+1=(x+1)^2

now f(x)=(x+1)^2

for definition

(gof)(x)=g(f(x))

then

abs(x+1)=g((x+1)^2)

substitute u=(x+1)^2

isolate the variable x
x=sqrt(u)-1
now

abs(x+1)=g(u)

but when we have absolute valor, there are two cases, when the inside is positive or negative

when abs(x+1) is negative is -x-1

-x-1=g(u)

but x=sqrt(u)-1

-(sqrt(u)-1)-1=g(u)
operating

-(sqrt(u))=g(u)

now replacing a random value for u we can replace any variable, returning to redefine this function in x

-(sqrt(x))=g(x)

similar to the first case now positive

(x+1)=g(u)

x=sqrt(u)-1

substitute

sqrt(u)=g(u)

now replacing a random value for u we can replace any variable, returning to redefine this function in x

sqrt(x)=g(x)