Question #60b11
1 Answer
Nov 16, 2017
When
Explanation:
#y=sqrt(x/m)+sqrt(m/x)#
Then I assume you're asking, what's the expression
Well, we need to find
#y=m^(-1/2)x^(1/2)+m^(1/2)x^(-1/2)#
So now we can differentiate with the power rule:
#dy/dx=1/2m^(-1/2)x^(-1/2)-1/2m^(1/2)x^(-3/2)=1/(2sqrt(mx))-sqrtm/(2xsqrtx)#
So then we want to know about:
#2xydy/dx-x/m+m/x#
#=2x(sqrt(x/m)+sqrt(m/x))(1/(2sqrt(mx))-sqrtm/(2xsqrtx))-x/m+m/x#
FOIL the two binomials:
#=2x(sqrtx/sqrtm1/(2sqrtmsqrtx)-sqrtx/sqrtmsqrtm/(2xsqrtx)+sqrtm/sqrtx1/(2sqrtmsqrtx)-sqrtm/sqrtxsqrtm/(2xsqrtx))-x/m+m/x#
And simplify:
#=2x(1/(2m)-1/(2x)+1/(2x)-m/(2x^2))-x/m+m/x#
Distribute:
#=(x/m-m/x)-x/m+m/x#
#=0#
Cool!