Question #60b11

1 Answer
Nov 16, 2017

When #y=sqrt(x/m)+sqrt(m/x)#, we observe that #2xydy/dx-x/m+m/x=0#.

Explanation:

#y=sqrt(x/m)+sqrt(m/x)#

Then I assume you're asking, what's the expression #2xydy/dx-x/m+m/x# equivalent to?

Well, we need to find #dy/dx#. First let's rewrite #y#.

#y=m^(-1/2)x^(1/2)+m^(1/2)x^(-1/2)#

So now we can differentiate with the power rule:

#dy/dx=1/2m^(-1/2)x^(-1/2)-1/2m^(1/2)x^(-3/2)=1/(2sqrt(mx))-sqrtm/(2xsqrtx)#

So then we want to know about:

#2xydy/dx-x/m+m/x#

#=2x(sqrt(x/m)+sqrt(m/x))(1/(2sqrt(mx))-sqrtm/(2xsqrtx))-x/m+m/x#

FOIL the two binomials:

#=2x(sqrtx/sqrtm1/(2sqrtmsqrtx)-sqrtx/sqrtmsqrtm/(2xsqrtx)+sqrtm/sqrtx1/(2sqrtmsqrtx)-sqrtm/sqrtxsqrtm/(2xsqrtx))-x/m+m/x#

And simplify:

#=2x(1/(2m)-1/(2x)+1/(2x)-m/(2x^2))-x/m+m/x#

Distribute:

#=(x/m-m/x)-x/m+m/x#

#=0#

Cool!