How do you differentiate f(x)= ln(2x+1)^(-1/2) f(x)=ln(2x+1)12?

1 Answer

=1/((2x+1)sqrt(ln(2x+1)))=1(2x+1)ln(2x+1)

Explanation:

d/dx sqrt(ln(2x+1)) = 1/(2sqrt(ln(2x+1)))*d/dxln(2x+1)ddxln(2x+1)=12ln(2x+1)ddxln(2x+1)

= 1/(2sqrt(ln(2x+1)))*1/(2x+1) *d/dx (2x+1)=12ln(2x+1)12x+1ddx(2x+1)

=1/(cancel(2)sqrt(ln(2x+1)))*1/(2x+1) *cancel(2)

=1/((2x+1)sqrt(ln(2x+1)))

Basically, it is the chain rule a bunch of times.

I hope that helps!