Question #ce8c6

1 Answer
Nov 16, 2017

1256u2

Explanation:

to find the intersections of both curves, equalize and obtain the cut points

first it will be put in function of y

x=5y

x=y24y+1

equalize

5y=y24y+1

0=y23y4

factoring

0=(y4)(y+1)

then y=4andy=1

now the area be

A=41(x1x2)dy

where x1=5y and x2=y24y+1

A=41(5yy2+4y1)dy

41(5)dy=5(4)5(1)=25

41(y)dy=y22((4)22(1)22)=152

41(y2)dy=y33((4)33(1)33)=653

41(4y)dy=4(y22)4((4)22(1)22))=30

41(1)dy=y(4(1))=5

25152653+305=1256

A=41(5yy2+4y1)dy=1256u2