How do you simplify #(3x^{3}+4x+11)\div (x^{2}-3x+2)#?

2 Answers
Nov 17, 2017

#18/((x -1)(x-2))+ 25/(x - 2)+3x+9#

Explanation:

#cancel(3x^3) + 4x +11 # #| ul(x^2 - 3x +2) #
#ul(cancel(3x^3) - 9x^2 +6x) # #(3x+9) #

#0+ cancel(9x^2)-2x+11 #
#ul( cancel(9x^2)-27x+18) #
# 0+25x-7#


#(3x^3 + 4x +11) /(x^2 - 3x +2) =3x+9+(25x-7)/(x^2 - 3x +2) #

#=3x+9+(25x-7)/((x - 2)(x -1))=#

#18/((x -1)(x-2))+ 25/(x - 2)+3x+9#

Nov 17, 2017

#3x+9+(25x+29)/(x^2-3x+2)#

Explanation:

Note that I use place keepers of no value to help with formatting alignment.

#color(white)("dddddddddddddd.dddd")3x^3+0x^2+color(white)("d")4x+11#
#color(magenta)(+3x)(x^2-3x+2) ->color(white)("d")ul(3x^3-9x^2+color(white)("d")6xlarr" Subtract" )#
#color(white)("dddddddddddddddddddd")0+9x^2-color(white)("d")2x+11#
#color(magenta)(+9)(x^2-3x+2)->color(white)("d..ddddd")ul(9x^2-27x-18larr" Subtract" #
#color(white)("ddddddddddddddddddddddddd")color(magenta)(0+25x+29larr" Remainder"#

#color(magenta)( 3x+9+(25x+29)/(x^2-3x+2) )#