Sin2xcos2x-cos2x+sin2x-1=0sin2xcos2xcos2x+sin2x1=0 Solve for x?

Find x such that 0 < x < 360

3 Answers
Nov 20, 2017

x_1=45x1=45, x_2=90x2=90, x_3=225x3=225, x_4=270x4=270

Explanation:

sin2x*cos2x-cos2x+sin2x-1=0sin2xcos2xcos2x+sin2x1=0

cos2x*(sin2x-1)+sin2x-1=0cos2x(sin2x1)+sin2x1=0

(cos2x+1)*(sin2x-1)=0(cos2x+1)(sin2x1)=0

After equating multpliers to 0, I found

For cos2x=-1cos2x=1, or 2x=180+360k2x=180+360k, so x_1=90x1=90 and x_2=270x2=270

For sin2x=1sin2x=1, or 2x=90+360k2x=90+360k, so x_3=45x3=45 and x_4=225x4=225

Nov 20, 2017

There are four solutions in the interval x:[0^o, 360^o]x:[0o,360o]
x_1 = 90^o; \qquad x_2 = 45^o; \qquad x_3=270^o; \qquad x_4=225^o;

Explanation:

\sin2x\cos2x-\cos2x+\sin2x-1=0
\cos2x(\sin2x-1)+(\sin2x-1)=0
(\cos2x+1)(\sin2x-1)=0

Either (\cos2x+1) vanishes or (\sin2x-1) vanishes...

Solutions for (\cos2x+1)=0 in the interval [0^o, 360^o] are x_1=90^o; \qquad x_2=270^o

Solutions for (\sin2x-1)=0 in the interval [0^o, 360^o] are x_3=45^o; \qquad x_4=225^o

Nov 20, 2017

x=45°, 90°,225°,270°

Explanation:

Here, sin2x*cos2x-cos2x+sin2x-1=0

or, cos2x(sin2x-1)+1(sin2x-1)=0

or, (cos2x+1)(sin2x-1)=0

Either cos2x+1=0......(1)

OR, sin2x-1=0.......(2)

From (1) we have

cos2x=-1=cos180°=cos540°

or, x=90°,270°

From (2) we have

sin2x-1=0

or, sin2x=1=sin90°=sin450°

or, 2x=90°, 450°

or, x=45°, 225°

So, the values of x are 45° ,90°, 225° and 270° .