How do you differentiate e^(xy)+y=x-1exy+y=x1?

2 Answers
Nov 23, 2017

Differentiate each term, put each term back into the equation, and then solve for dy/dxdydx

Explanation:

Differentiate: e^(xy)+y=x-1exy+y=x1

The first term:

Let u = xyu=xy, then (du)/dx = (d(xy))/dxdudx=d(xy)dx

Use the product rule:

(d(xy))/dx = (d(x))/dxy+x(d(y))/dxd(xy)dx=d(x)dxy+xd(y)dx

(du)/dx = y + xdy/dxdudx=y+xdydx

Use the chain rule:

(d(e^(xy)))/dx = (d(e^u))/(du)(du)/dxd(exy)dx=d(eu)dududx

(d(e^(xy)))/dx = e^u(du)/dxd(exy)dx=eududx

(d(e^(xy)))/dx = e^u(y + xdy/dx)d(exy)dx=eu(y+xdydx)

(d(e^(xy)))/dx = e^(xy)(y + xdy/dx)d(exy)dx=exy(y+xdydx)

(d(e^(xy)))/dx = ye^(xy) + xe^(xy)dy/dxd(exy)dx=yexy+xexydydx

The second term:

(d(y))/dx = dy/dxd(y)dx=dydx

The third term:

(d(x))/dx = 1d(x)dx=1

The fouth term:

(d(-1))/dx = 0d(1)dx=0

Put the terms back into the equation:

ye^(xy) + xe^(xy)dy/dx + dy/dx = 1yexy+xexydydx+dydx=1

Solve for dy/dxdydx:

xe^(xy)dy/dx + dy/dx = 1- ye^(xy)xexydydx+dydx=1yexy

(xe^(xy) + 1)dy/dx = 1- ye^(xy)(xexy+1)dydx=1yexy

dy/dx = (1- ye^(xy))/(xe^(xy) + 1)dydx=1yexyxexy+1

Nov 23, 2017

See explanation

Explanation:

First, we differentiate both sides with respect to x:

d/dx e^(xy) + dy/dx = d/dx(x+1)ddxexy+dydx=ddx(x+1)
->d/dxe^(xy)+ y' = 1 (1)

For differentiating e^(xy), recall that d/dx e^u = (du)/dx *e^u

With u=xy, (du)/dx = d/dx (xy)

Using the chain rule...

d/dx (xy) = dx/dx*y + x*dy/dx = y + xy'

Then back to (1), we get:
d/dxe^(xy) + y' = 1 -> ye^(xy)+y'xe^(xy) + y' = 1

We now move all terms without y' as a factor to the right hand side...

->y'xe^(xy) + y' = 1 -ye^(xy)

Factor out y' from the left hand side...

-> y' (xe^(xy)+1)= 1 -ye^(xy)

And divide both sides by (xe^(xy)+1)..

y' = (1-ye^(xy))/(xe^(xy)+1