Question #204ba

3 Answers
Nov 25, 2017

1/3*arc sin(3/2*lnx)+C.

Explanation:

Let, I=intdx/(xsqrt(4-9(lnx)^2).

Substitute lnx=t" so that, "dx/x=dt.

:. I=intdt/sqrt(4-9t^2).

=1/3*arc sin((3t)/2).

rArr I=1/3*arc sin(3/2*lnx)+C.

Nov 25, 2017

int (dx)/(xsqrt[4-9(Lnx)^2])=1/3*arcsin((3Lnx)/2)+C

Explanation:

int (dx)/(xsqrt[4-9(Lnx)^2])

=1/3*int (3dx)/(xsqrt[4-9(Lnx)^2])

After using 3Lnx=2sinu and (3dx)/x=2cosu*du transforms, this integral became

1/3*int (2cosu*du)/sqrt[4-4(sinu)^2]

=1/3*int (2cosu*du)/sqrt[4(cosu)^2]

=1/3*int (2cosu*du)/(2cosu)

=1/3*int du

=1/3*u+C

After using 3Lnx=2sinu and u=arcsin((3Lnx)/2) inverse transforms, I found

int (dx)/(xsqrt[4-9(Lnx)^2])=1/3*arcsin((3Lnx)/2)+C

Nov 25, 2017

This is done by the substitution method.

Explanation:

Let lnx be t.
Now, differentiate this equation on both sides.
1/x dx = dt
Now you can apply the formula of int 1/sqrt(a^2-x^2) = sin^-1(x/a)
and later put t = ln x back in the equation.