How do you graph #y=x^2-6x+8#?

1 Answer
Nov 27, 2017

#A=(0,8)#
#B=(2,0)#
#C=(4,0)#
#D=(3,-1)_min#

Explanation:

#y=x^2-6x+8=(x-2)(x-4)#

#y_((0))=8#
#y=0 => (x-2)(x-4)=0 => x_1=2 , x_2=4#

#y'=2x-6#
#y'=0 => 2x-6=0 => x=3#
#a>0 => x_min=3 => y_min=y_((3))=3^2-6*3+8=-1#

#=>#
#A=(0,8)#
#B=(2,0)#
#C=(4,0)#
#D=(3,-1)_min#

(graph):
graph{x^2-6x+8 [-3, 8, -5, 15]}