#cot765^@ = #? #sec765^@ = #? #csc765^@ = #?

2 Answers
Dec 1, 2017

#1,sqrt2,sqrt2#

Explanation:

#"note that "765^@=765-720^@=45^@#

#rArrcot765^@=1/(tan45^@)=1/1=1#

#rArrsec765^@=1/(cos45^@)=1/(1/sqrt2)=sqrt2#

#rArrcsc765^@=1/(sin45^@)=1/(1/sqrt2)=sqrt2#

Dec 1, 2017

#cot(45^@)=1#
#sec(45^@)=sqrt2#
#csc(45^@)=sqrt2#

Explanation:

Since, they are all in the same quadrant,

#cot(765^@)=cot(45^@)=1#
#sec(765^@)=sec(45^@)=sqrt2#
#csc(765^@)=csc(45^@)=sqrt2#

With the help of this chart, we can, hence, easily solve the equation.

#cot(45^@)=1#
#sec(45^@)=sqrt2#
#csc(45^@)=sqrt2#

https://study.com/academy/lesson/trigonometric-function-values-of-special-angles.html