How do you find the roots, real and imaginary, of y= -3x^2-16x +(x-3)^2+2 y=3x216x+(x3)2+2 using the quadratic formula?

1 Answer
Dec 2, 2017

22 real solutions:

x\approx -11.47913\qquad,\qquad x\approx 0.47913

Explanation:

First let’s simplify the equation by FOILing the (x-3)^2 and combining like terms:

(x-3)^2\quad\implies \quadx^2-3x-3x+9\quad\implies \quadx^2-6x+9

Now we can substitute that for (x-3)^2 in the original equation:

color(blue)(-3x^2)-color(red)(16x)+(color(blue)(x^2)-color(red)(6x)+color(green)(9))+color(green)(2)

Combine like terms:

color(blue)(-3x^2)+color(blue)(x^2)-color(red)(16x)-color(red)(6x)+color(green)(9)+color(green)(2)

\implies color(blue)(-22x)-color(red)(22x)+color(green)(11)

Now let’s define the variables:

  • color(blue)(a=-2)
  • color(red)(b=-22
  • color(green)(c=11

And plug them into the quadratic formula:

x=\frac{color(red)(-b)\pm\sqrt{color(red)(b^2)-4(color(blue)(a))(color(green)(c))}}{2 color(blue)(a)}

\implies x=\frac{color(red)(22)\pm\sqrt{(color(red)(-22))-4(color(blue)(-2))(color(green)(11))}}{2(color(blue)(-2))

\implies x=\frac{color(red)(22)\pm\sqrt{color(red)(484)+88}}{-4}

\implies x=\frac{color(red)(22)\pm\sqrt{572}}{-4}

\implies x=\frac{color(red)(22)\pm 2\sqrt{143}}{-4}

\implies x=\frac{11\pm1\sqrt{143}}{-2}

\implies x\approx -11.47913\qquad,\qquad x\approx 0.47913