First let’s simplify the equation by FOILing the (x-3)^2 and combining like terms:
(x-3)^2\quad\implies \quadx^2-3x-3x+9\quad\implies \quadx^2-6x+9
Now we can substitute that for (x-3)^2 in the original equation:
color(blue)(-3x^2)-color(red)(16x)+(color(blue)(x^2)-color(red)(6x)+color(green)(9))+color(green)(2)
Combine like terms:
color(blue)(-3x^2)+color(blue)(x^2)-color(red)(16x)-color(red)(6x)+color(green)(9)+color(green)(2)
\implies color(blue)(-22x)-color(red)(22x)+color(green)(11)
Now let’s define the variables:
- color(blue)(a=-2)
- color(red)(b=-22
- color(green)(c=11
And plug them into the quadratic formula:
x=\frac{color(red)(-b)\pm\sqrt{color(red)(b^2)-4(color(blue)(a))(color(green)(c))}}{2 color(blue)(a)}
\implies x=\frac{color(red)(22)\pm\sqrt{(color(red)(-22))-4(color(blue)(-2))(color(green)(11))}}{2(color(blue)(-2))
\implies x=\frac{color(red)(22)\pm\sqrt{color(red)(484)+88}}{-4}
\implies x=\frac{color(red)(22)\pm\sqrt{572}}{-4}
\implies x=\frac{color(red)(22)\pm 2\sqrt{143}}{-4}
\implies x=\frac{11\pm1\sqrt{143}}{-2}
\implies x\approx -11.47913\qquad,\qquad x\approx 0.47913