Question #3b757

2 Answers
Dec 5, 2017

#x=3/5 or 0.6#

Explanation:

#log_5 (5x+2)=1#

raise both sides to the 5

#5^(log_5(5x+2))=5^1#

#cancel(5^(log_5))(5x+2)=5^1#

#5x+2=5#

#5x=3#

#x=3/5=0.6#

Dec 5, 2017

#x=3/5#

Explanation:

Using the definition of logarithms'

#log_ab=c=>a^c=b#

so

#log_5(5x+2)=1#

#=>5^1=5x+2#

solving for #x#

#5x=5-2=3#

#x=3/5#