Question #0f638

4 Answers
Dec 2, 2017

See below.

Explanation:

This equation is equivalent to

sqrt(sin^2x) = sqrt(cos^2(3x))

now squaring both sides

sin^2x = cos^2(3x) rArr (sinx +cos3x)(sinx-cos3x) = 0

and now knowing that

cos3x = cos^3x-3cosx sin^2x

{(sinx+cos^3x-3cosx sin^2x = 0),(sinx-cos^3x+3cosx sin^2x = 0):}

Those equations to be completely solved require the solution of a cubic polynomial. We left this as an exercise.

Dec 2, 2017

A different method to the one below.

Explanation:

We have abs(sinx)=abs(cos3x). But by definition, cos3x=sin(pi/2-3x).

So the equation becomes abs(sinx)=abs(sin(pi/2-3x)).

This equation is true iff sinx=sin(pi/2-3x) or sinx=-sin(pi/2-3x)=sin(3x-pi/2)

Finding general solutions will be left as an exercise

Dec 5, 2017

(x=pi/8 + (kpi)/4)

Explanation:

|sinx|=|cos3x|

From the tables we know that :

color(blue)(cos3x=4 cos^3 x-3 cosx),

|sinx|=|4 cos^3 x-3 cosx|

+-sinx= (4cos^2 x-3)cosx

+-tan x= (4cos^2 x-3)

color(blue)(1+tan^2 x=1/cos^2x)

tan^2 x=( (4cos^2 x-3))^2=(16cos^4x-24cos^2 x+9)

1/cos^2x=16cos^4x-24cos^2 x+9+1

1=16cos^6x-24cos^4 x+10Cos^2x

I could solve this equation with y =cos^2x

16y^3-24y^2+10y-1=0

but it is beyond my capabilities.

If we play a little with the trigonometric circle we can find

that x=+-pi/4+kpi is one of the solutions, as

|sin(x)|=|sin(pi/4)+kpi|=sqrt(2)/2

and

|cos(3x)|=|cos(3pi/4)+3kpi|=sqrt(2)/2

color(red)(x=pi/4+kpi/2

so x=pi/4-> cos(x)=sqrt(2)/2-> y=0.5

We just need to divide the third degree equation by (y-0.5) and obtain the remainder solutions:

16y^2-16y+2=0

8y^2-8y+1=0

y=(8+-sqrt(8^2-4*8*1))/(2*8)

y=(8+-sqrt(64-32))/(16)

y=(8+-sqrt(32))/(16)

y=(8+-4sqrt(2))/(16)

y=(2+-sqrt(2))/(4)

->cos^2x=y

cosx=sqrt((2+-sqrt(2))/(4)

cosx=sqrt(2+-sqrt(2))/(2)

cosx=cos(+-pi/8) or cos x=cos (+-(3pi)/8)

x=+-pi/8+2kpi or x +-3pi/8+2kpi

color(red)(x=pi/8 + kpi/2)

Remember the first solution:

color(red)(x=pi/4+kpi/2

and gives

color(green)(x=pi/8 + (kpi)/4)

Dec 5, 2017

x = pi/8 + (kpi)/4
x = - pi/4 + kpi
x = - (3pi/4) + kpi

Explanation:

Note that sin x = cos (pi/2 - x)
Icos (pi/2 - x)I = Icos 3xI
We have to solve these equations:
cos (pi/2 - x) = cos 3x, and
cos (pi/2 - x) = - cos 3x
A. cos (pi/2 - x) = cos 3x
(pi/2 - x) = +- 3x
a. pi/2 - x = 3x --> 4x = pi/2 + 2kpi --> x = pi/8 + (kpi)/4
b. pi/2 - x = - 3x --> 2x = - pi/2 + 2kpi --> x = - pi/4 + kpi
B. cos (pi/2 - x) = - cos 3x = cos (3x + pi)
(pi/2 - x) = +- (3x + pi)
a. pi/2 - x = 3x + pi --> 4x = - pi/2 + 2kpi -->
x = - pi/4 + kpi
b. pi/2 - x = - 3x - pi --> 2x = - (3pi)/2 + 2kpi -->
x = - ((3pi)/4) + kpi
Finally, the general solutions are:
x = pi/8 + (kpi)/4; x = - pi/4 + kpi; x = -((3pi)/4) + kpi
Check.
x = pi/8 = 22^@5 --> sin 22.5 = 0.38 -->
cos 67.5 = 0.38. Proved
x = - 45 --> sin (- 45) = - sqrt2/2 -->
cos (- 135) = - sqrt2/2. Proved
x = - (3pi)/4 --> sin x = - sqrt2/2 -->
cos ((9pi)/4) = cos (pi/4) = sqrt2/2. Proved.