Question #84672

2 Answers
Dec 6, 2017

x=kpi, k in ZZ

Explanation:

cos3x*cosx-1=0

From tables take the formula for cos(3x):

(4Cos^3x-3cosx)*cosx-1=0

4Cos^4x-3cos^2x-1=0

This can be transformed in a second degree equation where y=cos^2(x):

4y^2-3y-1

y=(3+-sqrt(3^2-4*4*(-1)))/(2*4)

y=(3+-sqrt(9+16))/(8)=(3+-sqrt(25))/(8)

y=(3+-5)/(8)

y=8/8=1 or y=-2/8=-1/4

Now replace y by Cox^2x:

cos^2x=1 or cos^2x=-1/4

#cosx=+-1 or impossible

x=kpi

Dec 6, 2017

x = kpi

Explanation:

Use trig identity:
cos a.cos b = (1/2)[cos (a + b) + cos (a - b)]
In this case:
cos 3x.cos x = (cos 4x + cos 2x)/2 - 1 = 0
cos 4x + cos 2x - 2 = 0
Replace in the equation cos 4x by (2cos^2 2x - 1) -->
2cos^2 2x + cos 2x - 3 = 0
Solve this quadratic equation for cos 2x.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos 2x = 1, and cos 2x = c/(a) = - 3/2 (rejected)
cos 2x = 1. Unit circle -->
2x = 0 + 2kpi --> x = kpi
2x = 2pi + 2kpi --> x = pi + kpi General answer x = kpi Check. x = pi --> cos 3x = cos pi = - 1 --> cos x = cos pi = -1. cos 3x.cos x - 1 = (-1)(-1) - 1 = 0#. Proved