Question #3fd13

1 Answer
Dec 9, 2017

#x= pi n #
#x = pi n - pi/4#
# n in ZZ# ( n is an integer )

Explanation:

The first thing to identify is how:

#1/(cos^2 x ) = sec^2 x #

Yielding:

#sec^2 x = 1- tanx#

Now we must use the identity:

#1 + tan^2 x = sec^2 x #

So hence:

#=> 1 + tan^2x = 1 - tanx #

#=> tan^2x + tanx = 0 #

#=> tanx ( tanx +1 ) = 0 #

# => tanx = 0 #, #tanx = -1 #

#--------------------#
( sub-lesson if you didnt already know: )

General solution for #tanx = tan beta #:
#x = pi n + beta #

or in degrees:

#tanx^circ= tan gamma^circ #

#x^circ = 180^circ n + gamma^circ #

#n in ZZ#

#--------------------#

Now to solve : #tanx = 0:#

#tanx = tan 0 #

#=> x = pin + 0 # Using the general solution to #tan x = tan beta #

Now to solve #tanx = -1 :#

#tanx = tan (-pi/4 ) #

#=> x = pi n -pi/4 # again using the general solution of #tanx #

In degrees:

# x = 180^circ n, x = 180^circn - 45^circ #
#n in ZZ#

Hope this helped!