Help please?

enter image source here

2 Answers
Dec 12, 2017

Please see below.

Explanation:

.

You switch the xx and yy in each function and solve for yy:

1.1. y=-x/12y=x12

x=-y/12x=y12,

y=-12xy=12x

2.2. y=(x-12)/4y=x124

x=(y-12)/4x=y124

4x=y-124x=y12

y=4x+12y=4x+12

3.3. y=(3x+1)/6y=3x+16

x=(3y+1)/6x=3y+16

6x=3y+16x=3y+1

3y=6x-13y=6x1

y=(6x-1)/3y=6x13

Dec 12, 2017

Manipulate the equation so that xx is isolated on one side, getting:
1. f^-1(x) = -12xf1(x)=12x
2. f^-1(x) = 4x + 12f1(x)=4x+12
3.f^-1(x) = 2x - 1/3f1(x)=2x13

Explanation:

The inverse of a function, say, f(x)f(x), is a function f^-1(x)f1(x) such that f^-1(f(x)) = xf1(f(x))=x. To obtain the inverse function, manipulate the equation so that xx is isolated on one side.

Function 1: f(x) = -(x)/(12)f(x)=x12

We could multiply each side by -1212:

-12f(x) = x12f(x)=x

So, it must be that f^-1(x) = -12xf1(x)=12x. Let's test it to be sure:

f^-1(f(x)) = -12(f(x)) = -12(-(x)/(12)) = xf1(f(x))=12(f(x))=12(x12)=x.

Alright!

Function 2: f(x) = (x - 12)/4f(x)=x124

Multiply each side by 44:

4f(x) = x - 124f(x)=x12

Add each side by 1212:

4f(x) + 12 = x4f(x)+12=x

So f^-1(x) = 4x + 12f1(x)=4x+12.

f^-1(f(x)) = 4(f(x)) + 12 = 4((x - 12)/4) + 12f1(f(x))=4(f(x))+12=4(x124)+12
= x - 12 + 12 = x=x12+12=x.

Function 3: f(x) = (3x + 1)/6f(x)=3x+16

Multiply each side by 66:

6f(x) = 3x + 16f(x)=3x+1

Subtract 11 from each side:

6f(x) - 1 = 3x6f(x)1=3x

Divide each side by 33:

6/3 f(x) - 1/3 = x63f(x)13=x

2f(x) - 1/3 = x2f(x)13=x

So f^-1(x) = 2x - 1/3f1(x)=2x13.

f^-1(f(x)) = 2(f(x)) - 1/3 = 2((3x + 1)/6) - 1/3f1(f(x))=2(f(x))13=2(3x+16)13
= (3x + 1)/3 - 1/3 = (3x)/3 = x=3x+1313=3x3=x.