The inverse of a function, say, f(x)f(x), is a function f^-1(x)f−1(x) such that f^-1(f(x)) = xf−1(f(x))=x. To obtain the inverse function, manipulate the equation so that xx is isolated on one side.
Function 1: f(x) = -(x)/(12)f(x)=−x12
We could multiply each side by -12−12:
-12f(x) = x−12f(x)=x
So, it must be that f^-1(x) = -12xf−1(x)=−12x. Let's test it to be sure:
f^-1(f(x)) = -12(f(x)) = -12(-(x)/(12)) = xf−1(f(x))=−12(f(x))=−12(−x12)=x.
Alright!
Function 2: f(x) = (x - 12)/4f(x)=x−124
Multiply each side by 44:
4f(x) = x - 124f(x)=x−12
Add each side by 1212:
4f(x) + 12 = x4f(x)+12=x
So f^-1(x) = 4x + 12f−1(x)=4x+12.
f^-1(f(x)) = 4(f(x)) + 12 = 4((x - 12)/4) + 12f−1(f(x))=4(f(x))+12=4(x−124)+12
= x - 12 + 12 = x=x−12+12=x.
Function 3: f(x) = (3x + 1)/6f(x)=3x+16
Multiply each side by 66:
6f(x) = 3x + 16f(x)=3x+1
Subtract 11 from each side:
6f(x) - 1 = 3x6f(x)−1=3x
Divide each side by 33:
6/3 f(x) - 1/3 = x63f(x)−13=x
2f(x) - 1/3 = x2f(x)−13=x
So f^-1(x) = 2x - 1/3f−1(x)=2x−13.
f^-1(f(x)) = 2(f(x)) - 1/3 = 2((3x + 1)/6) - 1/3f−1(f(x))=2(f(x))−13=2(3x+16)−13
= (3x + 1)/3 - 1/3 = (3x)/3 = x=3x+13−13=3x3=x.