Question #ad2ca

2 Answers
Dec 12, 2017

f'(x)=(sinxcosx-x(cos^2x-sin^2x))/(sinxcosx)^2

=(2(1-2xcot(2x)))/sin(2x)

Explanation:

f(x)=x/(sinxcosx)=g(x)/(h(x))

g(x)=x
g'(x)=1

h(x)=sinxcosx
h'(x)=cosxcosx-sinxsinx=cos^2x-sin^2x

Using the double angle formula, h'(x) can be simplified down to cos(2x)

f'(x)=(h(x)g'(x)-h'(x)g(x))/(h(x))^2

=(sinxcosx-x(cos^2x-sin^2x))/(sinxcosx)^2

Continuing with the double angle rules:

=(sinxcosx-xcos(2x))/(sinxcosx)^2

=1/(sinxcosx)-(xcos(2x))/(sinxcosx)^2

sinxcosx=1/2(2sinxcosx)=1/2sin(2x)

f'(x)=1/(1/2sin(2x))-(xcos(2x))/(1/2sin(2x))^2

=2/sin(2x)-(xcos(2x))/(1/4sin^2(2x))

=2/sin(2x)-(4xcos(2x))/(sin^2(2x))

=2/sin(2x)-(4xcot(2x))/(sin(2x))

=(2-4xcot(2x))/sin(2x)

=(2(1-2xcot(2x)))/sin(2x)

Dec 12, 2017

color(blue)(1/(Cos x Sin x)-x/(Sin^2 x) + x/Cos^2 x)

Explanation:

We are given a function of x that we must differentiate:

f(x) = [x/(Sin x Cos x) ] color(red)(Function.1)

rArr f(x) = y = [x/(Sin x Cos x) ]

We need to find the First Derivative of f(x)

By observing f(x) we know that we must use the Quotient Rule to differentiate .

Quotient Rule for finding the derivatives states that

color(blue)((dy)/(dx)[f(x)/g(x)] = [(g(x)*f'(x) - f(x)*g'(x))/[g(x)]^2]

Using the Quotient Rule, we can write our color(red)(Function.1) as

=[d/(dx)[x]*[Cos x Sin x] -x*d/(dx) [ Cos x Sin x]]/[Cos x Sin x]^2

Product Rule for finding the derivatives states that

color(blue)((dy)/(dx)[f(x)*g(x)] = [(f'(x)*g(x) + f(x)*g'(x)]

=[1*[Cos x Sin x] -x*[d/(dx) [ Cos x]* Sin x+Cos x*d/(dx)[Sin x]]]/[Cos^2 x Sin^2 x]

On simplification we get,

=[[Cos x Sin x] -x[- Sin x* Sin x+Cos x Cos x]]/[Cos^2 x Sin^2 x]

We can simplify further to get

=[[Cos x Sin x] -x[- Sin^2 x+Cos^2 x]]/[Cos^2 x Sin^2 x]

We can rearrange terms to get

=[[Cos x Sin x] -x[Cos^2 x - Sin^2 x]]/[Cos^2 x Sin^2 x]

We can simplify further to obtain

=[Cos x Sin x]/[Cos^2 x Sin^2 x] -[x[Cos^2 x - Sin^2 x]]/[Cos^2 x Sin^2 x]

We can rewrite the above expression as

=[Cos x Sin x]/[[Cos x Sin x]*[Cos x Sin x]] -[x*Cos^2 x]/[Cos^2 x Sin^2 x] + [x*Sin^2 x]/[Cos^2 x Sin^2 x]

We can now cancel terms as

=[cancel(Cos x Sin x)]/[[cancel(Cos x Sin x)]*[Cos x Sin x]] -[x*cancel(Cos^2 x)]/[cancel(Cos^2 x) Sin^2 x] + [x*cancel(Sin^2 x)]/[Cos^2 x cancel(Sin^2 x)]

In this step, we get

1/(Cos x Sin x)-x/(Sin^2 x) + x/Cos^2 x ....... Final Result

I hope you find this solution helpful.