How do you evaluate #\frac{(4x)/{4}}{(3x)/2}#?

2 Answers
Dec 14, 2017

#((4x)/4)/((3x)/2)=2/3#

Explanation:

#((4x)/4)/((3x)/2)=(4x)/4xx2/(3x)#
#(4x)/4xx2/(3x)=(8x)/(12x)#
#(8x)/(12x)=2/3#

Dec 14, 2017

#((4x)/4)/((3x)/2)# simplifies to #2/3#.

Explanation:

Simplify:

#((4x)/4)/((3x)/2)#

This is a fraction divided by a fraction.

#(4x)/4-:(3x)/2#

Cancel #4#.

#(color(red)cancel(color(black)(4))^1x)/color(red)cancel(color(black)(4))^1-:(3x)/2#

Simplify. Any single number or variable is understood to be #n/1#.

#x/1-:(3x)/2#

When dividing by a fraction, multiply by its reciprocal.

#x/1xx2/(3x)#

Multiply the numerators and denominators.

#(x xx2)/(1xx3x)#

Simplify.

#(2x)/(3x)#

Cancel #x#.

#(2color(red)cancel(color(black)(x)))^1/(3color(red)cancel(color(black)(x)))^1#

Simplify.

#2/3#