How do you multiply and simplify \frac { y ^ { 2} - 4} { y ^ { 2} } \cdot \frac { y ^ { 2} - 2y } { y ^ { 2} + 7y - 18}y24y2y22yy2+7y18?

2 Answers
Dec 17, 2017

\frac { (y -2)(y+2)} { y (y+9)} (y2)(y+2)y(y+9)
OR
=\frac{y^2 -4}{y^2+9y} =y24y2+9y

Explanation:

\frac { y ^ { 2} - 4} { y ^ { 2} } \cdot \frac { y ^ { 2} - 2y } { y ^ { 2} + 7y - 18}y24y2y22yy2+7y18

We know (a^2- b^2) = (a-b)(a+b)(a2b2)=(ab)(a+b)

so (y^2 - 4) = (y-2)(y+2)(y24)=(y2)(y+2)

Also if we factorise the denominator term, ( y ^ { 2} + 7y - 18)(y2+7y18),
we get (y+9)(y-2)(y+9)(y2)

So give expression can be written as:

=\frac { (y -2)(y+2)} { y ^ { 2} } \cdot \frac { y (y - 2) } { (y+9)(y-2) }=(y2)(y+2)y2y(y2)(y+9)(y2)

=\frac { (y -2)(y+2)} { y ^ { cancel(2)} } \cdot \frac { cancely^1 cancel((y - 2)) } { (y+9)cancel((y-2)) }

=\frac { (y -2)(y+2)} { y } \cdot \frac { 1 } { (y+9) }

=\frac { (y -2)(y+2)} { y (y+9)}
OR
=\frac{y^2 -4}{y^2+9y}

((y-2)(y+2))/y^2*(y(y-2))/((y-2)(y+9))

((y-2)(y+2))/(y(y+9))