Question #923ff

1 Answer
Dec 19, 2017

(tan(2x)+2x(sec(2x))^2)/(xtan(2x))tan(2x)+2x(sec(2x))2xtan(2x)

Explanation:

d/dx(ln(xtan(2x)))ddx(ln(xtan(2x)))
=1/(xtan(2x))*d/dx(xtan(2x))=1xtan(2x)ddx(xtan(2x)) (ln(x) derivative and chain rule)

=1/(xtan(2x))[tan(2x)*d/dx(x)+x*d/dx(tan(2x))]=1xtan(2x)[tan(2x)ddx(x)+xddx(tan(2x))] (product rule)

=1/(xtan(2x))[tan(2x)*1+x*(sec(2x))^2*d/dx(2x)]=1xtan(2x)[tan(2x)1+x(sec(2x))2ddx(2x)] (tanx derivative)

=1/(xtan(2x))[tan(2x)+x(sec(2x))^2*2]=1xtan(2x)[tan(2x)+x(sec(2x))22]
=(tan(2x)+2x(sec(2x))^2)/(xtan(2x))=tan(2x)+2x(sec(2x))2xtan(2x)

(you can do further simplification if you want)