How do you graph #f(x)=(x^2+7x+12)/(-4x^2-8x+12)# using holes, vertical and horizontal asymptotes, x and y intercepts?

1 Answer
Dec 26, 2017

hole: #x=-3#
vertical asymptote: #x=1#
horizontal asymptote: #y=-1/4#
x and y intercepts: #(0,1) and (-4,0)#

Explanation:

#f(x)={x^2+7x+12}/{-4x^2-8x+12}={(x+3)(x+4)}/{-4[x^2+2x-3]}={cancel((x+3))(x+4)}/{-4[cancel((x+3))(x-1)]}=-{(x+4)}/{4(x-1)}#
#=>#
hole: #x=-3#


From now on we will work only with our new nicer #f(x)#:
#f(x)=-{(x+4)}/{4(x-1)}#
vertical asymptote: #4(x-1)=0 iff x=1#
horizontal asymptotes:
#lim_{x rarr +oo}f(x)=-1/4#
#lim_{x rarr -oo}f(x)=-1/4#
#=>#
horizontal asymptote: #y=-1/4#


x and y intercepts:
#f(0)=-{(0+4)}/{4(0-1)}=-4/-4=1#
#f(x)=0 iff -{(x+4)}/{4(x-1)}=0 => x=-4#
#=>#
x and y intercepts: #(0,1) and (-4,0)#


graph:
graph{(x^2+7x+12)/(-4x^2-8x+12) [-10, 10, -5, 5]}