How do you integrate int e^(2x)sin(3x)e2xsin(3x) by integration by parts method?

1 Answer
Dec 28, 2017

inte^(2x)sin(3x)dx=-3/13e^(2x)cos(3x)+2/13e^(2x)sin(3x)e2xsin(3x)dx=313e2xcos(3x)+213e2xsin(3x)

Explanation:

inte^(2x)sin(3x)dxe2xsin(3x)dx

if u=e^(2x)u=e2x and dv=sin(3x)dxdv=sin(3x)dx, then du=2e^(2x)dxdu=2e2xdx and v=-1/3cos(3x)v=13cos(3x).

using integration by parts, the integral becomes:

-1/3e^(2x)cos(3x)-int-1/3*2e^(2x)cos(3x)dx13e2xcos(3x)132e2xcos(3x)dx
=-1/3e^(2x)cos(3x)+2/3inte^(2x)cos(3x)dx=13e2xcos(3x)+23e2xcos(3x)dx

integrate by parts again:

u=e^(2x)u=e2x and dv=cos(3x)dxdv=cos(3x)dx, which means du=2e^(2x)dxdu=2e2xdx and v=1/3sin(3x)v=13sin(3x)

the integral is now:
=-1/3e^(2x)cos(3x)+2/3(1/3e^(2x)sin(3x)-int2*1/3e^(2x)sin(3x)dx)=13e2xcos(3x)+23(13e2xsin(3x)213e2xsin(3x)dx)
=-1/3e^(2x)cos(3x)+2/9e^(2x)sin(3x)-2/3int2/3e^(2x)sin(3x)dx=13e2xcos(3x)+29e2xsin(3x)2323e2xsin(3x)dx
=-1/3e^(2x)cos(3x)+2/9e^(2x)sin(3x)-4/9inte^(2x)sin(3x)dx=13e2xcos(3x)+29e2xsin(3x)49e2xsin(3x)dx

remember that this expression is equal to the original integral, meaning:

inte^(2x)sin(3x)dx=-1/3e^(2x)cos(3x)+2/9e^(2x)sin(3x)-4/9inte^(2x)sin(3x)dxe2xsin(3x)dx=13e2xcos(3x)+29e2xsin(3x)49e2xsin(3x)dx

solve for inte^(2x)sin(3x)dxe2xsin(3x)dx:

13/9inte^(2x)sin(3x)dx=-1/3e^(2x)cos(3x)+2/9e^(2x)sin(3x)139e2xsin(3x)dx=13e2xcos(3x)+29e2xsin(3x)
inte^(2x)sin(3x)dx=9/13(-1/3e^(2x)cos(3x)+2/9e^(2x)sin(3x))e2xsin(3x)dx=913(13e2xcos(3x)+29e2xsin(3x))
inte^(2x)sin(3x)dx=-3/13e^(2x)cos(3x)+2/13e^(2x)sin(3x)e2xsin(3x)dx=313e2xcos(3x)+213e2xsin(3x)