Question #3c093

2 Answers
Jan 1, 2018

1/(1+(y/x)^2)*(((dy)/dx*x-1*y)/x^2)

Explanation:

Use implicit differentiation.
The derivative of arctan(f(x)) is 1/(1+(f(x))^2)*f'(x) (chain rule)

This means d/dx(arctan(y/x))=1/(1+(y/x)^2)*d/dx(y/x)

Using quotient rule:
=1/(1+(y/x)^2)*(((dy)/dx*x-1*y)/x^2)

Jan 1, 2018

(d(tan^-1(y/x)))/dx = -y/(x^2+y^2)

Explanation:

Given: tan^-1(y/x)

Using the chain rule, where u = y/x

(d(tan^-1(y/x)))/dx = (d(tan^-1(u)))/(du)(du)/dx

(d(tan^-1(y/x)))/dx = 1/(1+u^2)(du)/dx

(d(tan^-1(y/x)))/dx = 1/(1+(y/x)^2)(d(y/x))/dx

(d(tan^-1(y/x)))/dx = 1/(1+(y/x)^2)(-y/x^2)

(d(tan^-1(y/x)))/dx = x^2/(x^2+y^2)(-y/x^2)

(d(tan^-1(y/x)))/dx = -y/(x^2+y^2)