Question #bcad8

2 Answers
Jan 2, 2018

#y=1/10x-13/5#

Explanation:

First find the gradient by doing change in y/change in x such as...

m(gradient)= #(-3-(-4))/(-4-(-14))#
=#1/10#

equation is y=#1/10x+b#

to find b you will need to substitute one of the points to the equation and solve for b
such as...

(-4,-3)
(x,y)

#=-3=1/10(-4)+b#
#=-3=-2/5+b#
#=-13/5=b#

equation is #y=1/10x-13/5#

you can also use #y-y1=m(x-x1)#(point-slope formula).

Jan 2, 2018

#y = \frac{1}{10}x-\frac{13}{5}#

Explanation:

Given two points #(x_1, y_1)# and #(x_2, y_2)# you have to use this formula here:
#\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}#

Let's substitute:
#\frac{y-(-4)}{-3-(-4)}=\frac{x-(-14)}{-4-(-14)}#

#\frac{y+4}{-3+4}=\frac{x+14}{-4+14}#

#\frac{y+4}{1}=\frac{x+14}{10}#

#y+4=\frac{x+14}{10}#

#10(y+4)=x+14#

#10y+40=x+14#

#10y=x+14-40#

#10y=x-26#

#y=\frac{1}{10}x-\frac{26}{10}#

The final result:
#y=\frac{1}{10}x-\frac{13}{5}#