Question #bc254

2 Answers
Jan 3, 2018

The answers are #(1)=4cosa# and #tan15=2-sqrt3#

Explanation:

Hola!

#sin^2a+cos^2a=1#

#sin(2a)=2sinacosa#

#:.#

#sin(2a)/(1-cos^2a)*((sin2a)/cosa)#

#=(2sinacosa)^2/((sin^2a*cosa))#

#(4cancel(sin^2a)cos^2a)/(cancel(sin^2a)cosa)#

#=4cosa#

#"second part"#

#tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)#

Let #alpha=60^@#, #=>#, #tan60=sqrt3#

and #beta=45^@#, #=>#, #tan45=1#

Therefore,

#tan(60-45)=tan15=(tan60-tan45)/(1+tan60tan45)#

#=(sqrt3-1)/(1+sqrt3)#

#=(sqrt3-1)/(sqrt3+1)*(sqrt3-1)/(sqrt3-1)#

#=(sqrt3-1)^2/(3-1)#

#=(3+1-2sqrt3)/(2)#

#=(4-2sqrt3)/2#

#=2-sqrt3#

Espero que eso lo haya ayudado!

Jan 3, 2018

Por favor ver mas abajo.

Explanation:

Ejercicio 1 (nota: se dice sen "sin" en Socratic):

Formula de angulos dobles:

#\sin 2a = 2\sin a\cos a#

#color(blue)({\sin 2a}/{1-\cos^2 a}={2\sin a\cos a}/{\sin^2a}={2\cos a}/{\sin a})#

#color(red)({\sin 2a}/{\cos a}={2\sin a\cos a}/\cos a=2\sin a#

#color(blue)({2\cos a}/{\sin a})×color(red)(2\sin a)=4\cos a#

Ejercicio 2:

Formula de la tangente de diferencia:

#\tan(a-b)={\tan a-\tan b}/{1+\tan a\tan b}#

#\tan(15°)=\tan(45°-30°)={\tan 45°-\tan 30°}/{1+\tan 45°\tan 30°}#

#={1-{1}/{\sqrt{3}}}/{1+(1×{1}/{\sqrt{3}})}#

#={sqrt{3}-1}/{sqrt{3}+1}#

#={(sqrt{3}-1)×(sqrt{3}-1)}/{3-1}#

#={4-2\sqrt{3}}/2=2-\sqrt{3}#