Question #bc254

2 Answers
Jan 3, 2018

The answers are (1)=4cosa and tan15=2-sqrt3

Explanation:

Hola!

sin^2a+cos^2a=1

sin(2a)=2sinacosa

:.

sin(2a)/(1-cos^2a)*((sin2a)/cosa)

=(2sinacosa)^2/((sin^2a*cosa))

(4cancel(sin^2a)cos^2a)/(cancel(sin^2a)cosa)

=4cosa

"second part"

tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)

Let alpha=60^@, =>, tan60=sqrt3

and beta=45^@, =>, tan45=1

Therefore,

tan(60-45)=tan15=(tan60-tan45)/(1+tan60tan45)

=(sqrt3-1)/(1+sqrt3)

=(sqrt3-1)/(sqrt3+1)*(sqrt3-1)/(sqrt3-1)

=(sqrt3-1)^2/(3-1)

=(3+1-2sqrt3)/(2)

=(4-2sqrt3)/2

=2-sqrt3

Espero que eso lo haya ayudado!

Jan 3, 2018

Por favor ver mas abajo.

Explanation:

Ejercicio 1 (nota: se dice sen "sin" en Socratic):

Formula de angulos dobles:

\sin 2a = 2\sin a\cos a

color(blue)({\sin 2a}/{1-\cos^2 a}={2\sin a\cos a}/{\sin^2a}={2\cos a}/{\sin a})

color(red)({\sin 2a}/{\cos a}={2\sin a\cos a}/\cos a=2\sin a

color(blue)({2\cos a}/{\sin a})×color(red)(2\sin a)=4\cos a

Ejercicio 2:

Formula de la tangente de diferencia:

\tan(a-b)={\tan a-\tan b}/{1+\tan a\tan b}

\tan(15°)=\tan(45°-30°)={\tan 45°-\tan 30°}/{1+\tan 45°\tan 30°}

={1-{1}/{\sqrt{3}}}/{1+(1×{1}/{\sqrt{3}})}

={sqrt{3}-1}/{sqrt{3}+1}

={(sqrt{3}-1)×(sqrt{3}-1)}/{3-1}

={4-2\sqrt{3}}/2=2-\sqrt{3}