Question #e5ad5

2 Answers
Jan 7, 2018

For an angle #A# in the second quadrant,
#sin(A)=4/5#
#cos(A)=-3/5#
#sin(2A)=-24/25#
#cos(2A)=-7/25#
#tan(2A)=24/7#

Explanation:

We are given that #sin(A)=4/5# and that angle #A# is in the second quadrant. Recall that the cosine value of an angle in the second quadrant is always negative.

Then, using the identity #sin^2(theta)+cos^2(theta)=1# and remembering that #cos(A)# is negative, we have
#cos(A)=-sqrt(1-sin^2(theta))#
#\ \ \ \ \ \ \ " "=-sqrt(1-(4/5)^2)#
#\ \ \ \ \ \ \ " "=-3/5#

So now we know that #sin(A)=4/5# and #cos(A)=-3/5#. Then, the problem asks us to find #sin(2A)# and #cos(2A)#. To do so, we need the double-angle identities:

#sin(2A)=2sin(A)cos(A)=2*4/5*(-3/5)=-24/25#
#cos(2A)=cos^2(A)-sin^2(A)=(-3/5)^2-(4/5)^2=-7/25#

Finally, we want to demonstrate that #tan(2A)=24/7#. Remember that #tan(theta)# is defined as #sin(theta)/cos(theta)#. Therefore,
#tan(2A)=sin(2A)/cos(2A)=(-24/25)/(-7/25)=24/7#.

Jan 7, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sin^2A+cos^2A=1#

#•color(white)(x)sin2A=2sinAcosA#

#•color(white)(x)cos2A=cos^2A-sin^2A#

#tan2A=(sin2A)/(cos2A)#

#•color(white)(x)cosA=+-sqrt(1-sin^2A)#

#"since A is in second quadrant then cos is negative"#

#rArrcosA=-sqrt(1-(4/5)^2)#

#color(white)(rArrcosA)=-sqrt(1-16/25)=-sqrt(9/25)=-3/5#

#•color(white)(x)sin2A=2xx4/5xx-3/5=-24/25#

#•color(white)(x)cos2A=(-3/5)^2-(4/5)^2#

#color(white)(xxxxxxx)=9/25-16/25=-7/25#

#•color(white)(x)tan2A=(-24/25)/(-7/25)#

#color(white)(xxxxxxx)=-24/25xx-25/7=24/7#