Question #14583

1 Answer
Jan 9, 2018

y'=dy/dx=1/(2(x-2))-0.5

Explanation:

y=0.5ln(x-2)-0.5x-1

First, differentiate 0.5ln(x-2).

d/dx(0.5ln(x-2))=0.5d/dx(ln(x-2))

Using the chain rule ,

let u=x-2

0.5d/dx(ln(x-2))=0.5d/dx(ln(u))*d/dx(x-2)

0.5d/dx(ln(x-2))=0.5*1/u*1

0.5d/dx(ln(x-2))=0.5/u

Substitute u=x-2 back in

0.5d/dx(ln(x-2))=0.5/(x-2)=1/(2(x-2))

y'=1/(2(x-2))-(0.5x)'-(1)'

y'=1/(2(x-2))-0.5