Question #a58a3

1 Answer
Jan 12, 2018

inte^(8theta)sin(9theta)d theta=-9/145e^(8theta)cos(9theta)+8/145e^(8theta)sin(9theta)+"C"

OR

inte^(8theta)sin(9theta) d theta=-1/145e^(8theta){9cos(9theta)-8sin(9theta)}+"C"

Explanation:

Given inte^(8theta)sin(9theta)d theta

We will Apply Integration by Parts (I.B.P) twice and solve the integral algebraically at the end:

int u_1 dv_1=uv-int v du

Also: We'll let inte^(8theta)sin(9theta)d theta=I

Let color(red)(u=e^(8theta);dv=sin(9theta)

Thus: color(red)(du_1=8e^(8theta)d theta;v_1=-1/9cos(9theta)

I=color(red)(e^(8theta)*-1/9cos(9theta)-int-1/9cos(9theta)*8e^(8theta)d theta

Simplify

I=color(red)(-1/9e^(8theta)cos(9theta)+8/9intcos(9theta)*e^(8theta)d theta

Apply I.B.P again

color(blue)(u_2=e^(8theta);dv_2=cos(9theta)

color(blue)(du_2=8e^(8theta)d theta;v_2=1/9sin(9theta)

I=color(red)(-1/9e^(8theta)cos(9theta)+8/9)color(blue)({e^(8theta)*1/9sin(9theta)-int1/9sin(9theta)*8e^(8theta)d theta}

Simplify

I=color(red)(-1/9e^(8theta)cos(9theta)+8/9)color(blue)({1/9e^(8theta)sin(9theta)-8/9intsin(9theta)*e^(8theta)d theta}

I=color(red)(-1/9e^(8theta)cos(9theta)+)color(blue)(8/81e^(8theta)sin(9theta)-64/81inte^(8theta)sin(9theta) d theta

**Notice how the integral ** inte^(8theta)sin(9theta)d theta appears both on the left and right sides and so we can simplify this algebraic expression simply by solving for inte^(8theta)sin(9theta)d theta

Add 64/81inte^(8theta)sin(9theta)d theta to both sides

145/81inte^(8theta)sin(9theta)d theta=-1/9e^(8theta)cos(9theta)+8/81e^(8theta)sin(9theta)

Divide 145/81 to both sides

inte^(8theta)sin(9theta)d theta=81/145{-1/9e^(8theta)cos(9theta)+8/81e^(8theta)sin(9theta)}

Simplify

inte^(8theta)sin(9theta)d theta=-81/1305e^(8theta)cos(9theta)+648/11745e^(8theta)sin(9theta)

inte^(8theta)sin(9theta)d theta=-9/145e^(8theta)cos(9theta)+8/145e^(8theta)sin(9theta)+"C"

Alternatively, we can factor out -1/145e^(8theta) to get:

inte^(8theta)sin(9theta) d theta=-1/145e^(8theta){9cos(9theta)-8sin(9theta)}+"C"