Question #59763

3 Answers
Jan 12, 2018

tan(x)sec(x)

Explanation:

To start:

lim_(Deltax->0)(sec(x+Deltax)-sec(x))/(Deltax)

=lim_(Deltax->0)(1/cos(x+Deltax)-1/cos(x))/(Deltax)

=lim_(Deltax->0)((cos(x)-cos(x+Deltax))/(cos(x)cos(x+Deltax)))/(Deltax)

=lim_(Deltax->0)(cos(x)-cos(x+Deltax))/(cos(x)cos(x+Deltax)Deltax)

Now use the trig identity:

cos(A)-cos(B)=-2sin((A+B)/2)sin((A-B)/2)

So we now have:

=lim_(Deltax->0)(-2sin((x+x+Deltax)/2)sin((x - x-Deltax)/2))/(cos(x)cos(x+Deltax)Deltax)

=lim_(Deltax->0)(-2sin(x+(Deltax)/2)sin(-(Deltax)/2))/(cos(x)cos(x+Deltax)Deltax)

Take the negative at the front and cancel with the negative inside the second sin function and multiply the top and the bottom by 1/2 to take the factor of 2 at the top and place on the bottom like so:

=lim_(Deltax->0)(sin(x+(Deltax)/2)sin((Deltax)/2))/(cos(x)cos(x+Deltax)(Deltax)/2)

=lim_(Deltax->0)(sin(x+(Deltax)/2))/(cos(x)cos(x+Deltax))*lim_(Deltax->0)sin((Deltax)/2)/((Deltax)/2)

lim_(Deltax->0)sin((Deltax)/2)/((Deltax)/2)=1

So we are left with:

=lim_(Deltax->0)(sin(x+(Deltax)/2))/(cos(x)cos(x+Deltax))

Evaluating the limit by direct substitution:

=sin(x)/(cos(x)cos(x))=sin(x)/cos(x)*1/cos(x)=tan(x)sec(x)

That is the derivative of sec(x) so that is exactly what we expected.

For a proof that:

lim_(Deltax->0)sin((Deltax)/2)/((Deltax)/2)=1

follow this link:
https://socratic.org/questions/how-do-you-use-the-squeeze-theorem-to-find-lim-sin-x-x-as-x-approaches-zero

Jan 12, 2018

sec(x)tan(x)

Explanation:

To evaluate lim_(Deltax to 0)((sec(x+Deltax)-sec(x))/(Deltax)) notice that is of the form lim_(Deltax to 0)((f(x+Deltax)-f(x))/(Deltax)), which is the limit definition of the derivative.

So,

lim_(Deltax to 0)((sec(x+Deltax)-sec(x))/(Deltax))=f'(x),

where f(x)=sec(x).

For f(x) it's known that f'(x)=sec(x)tan(x) so:

lim_(Deltax to 0)((sec(x+Deltax)-sec(x))/(Deltax))=sec(x)tan(x).

Jan 12, 2018

Very much like Andrews I.'s answer. The details are different.

Explanation:

We'll need:
sect=1/cost and

cos(x+Deltax)=cosx cos Deltax - sinx sin Deltax

and the limits:

lim_(Deltaxrarr0)(sin Deltax)/(Deltax)=1 and lim_(Deltaxrarr0)(1-cos Deltax)/(Deltax)=0.

Solution

lim_(Deltaxrarr0)(sec(x+Deltax)-secx)/(Deltax) = lim_(Deltaxrarr0)(1/(cos(x+Deltax))-1/cos(x))/(Deltax)

= lim_(Deltaxrarr0)((cosx-cos(x+Deltax))/(Deltaxcos(x)cos(x+Deltax)))

Expand cos(x+Deltax) in the numerator only. (Its would be OK to expand it in the denominator, but it is not necessary.)

= lim_(Deltaxrarr0)(cosx-(cosxcos Deltax-sinxsin Deltax))/(Deltaxcos(x)cos(x+Deltax))

Regroup to use the fundamental trigonometric limits.

= lim_(Deltaxrarr0)[(cosx-cosxcos Deltax)/(Deltaxcosxcos(x+Deltax))+(sinxsin Deltax)/(Deltaxcos(x)cos(x+Deltax))]

= lim_(Deltaxrarr0)[cosx/(cosxcos(x+Deltax))((1-cos Deltax)/(Deltax))+(sinx)/(cos(x)cos(x+Deltax))((sin Deltax)/(Deltax))]

Evaluate the limit using the fundamental trig limits and continuity of cosine.

= cosx/(cosxcos(x))(0)+(sinx)/(cos(x)cos(x))(1)

=sinx/cos^2x=1/cosxsinx/cosx=secxtanx