The number of solution of the equation cosx cos2x cos3x=1/4?

1 Answer
Jan 14, 2018

There are six solutions between any two cobsecutive integer multiples of #\pi#. See below.

Explanation:

Note first that

#\cos(x+\pi)=-\cos(x)#

#\cos(2(x+\pi))=\cos(2x)#

#\cos(3(x+\pi))=-\cos(3x)#

So the function #f(x)=\cos(x)\cos(2x)\cos(3x)# has a period #\pi#, and its solutions for a value of #1/4# will follow suit.

Using the sum product relation for cosines:

#\cos(x)\cos(3x)=(1/2)(\cos(3x-x)+\cos(3x+x))#

#=(1/2)(\cos(2x)+\cos(4x))#

So then

#\cos(x)\cos(2x)\cos(3x)=1/4=(1/2)(\cos(2x)+\cos(4x))#

#2(\cos(2x)+\cos(4x))=1#

Then from the double angle formula:

#cos(4x)=2\cos^2(2x)-1#

#2(\cos(2x)+2\cos^2(2x)-1)=1#

#4\cos^3(2x)+2\cos^2(2x)-2\cos(2x)-1=0#

Note that the equation comes out with trigonometric functions of #2x# because of the period being #\pi#.

We can factor the zero polynomial:

#(2\cos(2x)+1)(2\cos^2(2x)-1)=0#

So either #\cos(2x)=-(1/2)# or else #\cos(2x)=\pm(\sqrt(2)/2)#. This leads to six sets of solutions having period #\pi#:

If #\cos(2x)=-(1/2)# then #x=\pm(\pi/3)+n\pi#, for any integer #n#.

If #\cos(2x)=((\sqrt(2))/2)# then #x=\pm(\pi/8)+n\pi#, for any integer #n#.

If #\cos(2x)=(-(\sqrt(2))/2)# then #x=\pm((3\pi)/8)+n\pi#, for any integer #n#.