The number of solution of the equation cosx cos2x cos3x=1/4?

1 Answer
Jan 14, 2018

There are six solutions between any two cobsecutive integer multiples of \piπ. See below.

Explanation:

Note first that

\cos(x+\pi)=-\cos(x)cos(x+π)=cos(x)

\cos(2(x+\pi))=\cos(2x)cos(2(x+π))=cos(2x)

\cos(3(x+\pi))=-\cos(3x)cos(3(x+π))=cos(3x)

So the function f(x)=\cos(x)\cos(2x)\cos(3x)f(x)=cos(x)cos(2x)cos(3x) has a period \piπ, and its solutions for a value of 1/414 will follow suit.

Using the sum product relation for cosines:

\cos(x)\cos(3x)=(1/2)(\cos(3x-x)+\cos(3x+x))cos(x)cos(3x)=(12)(cos(3xx)+cos(3x+x))

=(1/2)(\cos(2x)+\cos(4x))=(12)(cos(2x)+cos(4x))

So then

\cos(x)\cos(2x)\cos(3x)=1/4=(1/2)(\cos(2x)+\cos(4x))cos(x)cos(2x)cos(3x)=14=(12)(cos(2x)+cos(4x))

2(\cos(2x)+\cos(4x))=12(cos(2x)+cos(4x))=1

Then from the double angle formula:

cos(4x)=2\cos^2(2x)-1cos(4x)=2cos2(2x)1

2(\cos(2x)+2\cos^2(2x)-1)=12(cos(2x)+2cos2(2x)1)=1

4\cos^3(2x)+2\cos^2(2x)-2\cos(2x)-1=04cos3(2x)+2cos2(2x)2cos(2x)1=0

Note that the equation comes out with trigonometric functions of 2x2x because of the period being \piπ.

We can factor the zero polynomial:

(2\cos(2x)+1)(2\cos^2(2x)-1)=0(2cos(2x)+1)(2cos2(2x)1)=0

So either \cos(2x)=-(1/2)cos(2x)=(12) or else \cos(2x)=\pm(\sqrt(2)/2)cos(2x)=±(22). This leads to six sets of solutions having period \piπ:

If \cos(2x)=-(1/2)cos(2x)=(12) then x=\pm(\pi/3)+n\pix=±(π3)+nπ, for any integer nn.

If \cos(2x)=((\sqrt(2))/2)cos(2x)=(22) then x=\pm(\pi/8)+n\pix=±(π8)+nπ, for any integer nn.

If \cos(2x)=(-(\sqrt(2))/2)cos(2x)=(22) then x=\pm((3\pi)/8)+n\pix=±(3π8)+nπ, for any integer nn.