Note first that
\cos(x+\pi)=-\cos(x)cos(x+π)=−cos(x)
\cos(2(x+\pi))=\cos(2x)cos(2(x+π))=cos(2x)
\cos(3(x+\pi))=-\cos(3x)cos(3(x+π))=−cos(3x)
So the function f(x)=\cos(x)\cos(2x)\cos(3x)f(x)=cos(x)cos(2x)cos(3x) has a period \piπ, and its solutions for a value of 1/414 will follow suit.
Using the sum product relation for cosines:
\cos(x)\cos(3x)=(1/2)(\cos(3x-x)+\cos(3x+x))cos(x)cos(3x)=(12)(cos(3x−x)+cos(3x+x))
=(1/2)(\cos(2x)+\cos(4x))=(12)(cos(2x)+cos(4x))
So then
\cos(x)\cos(2x)\cos(3x)=1/4=(1/2)(\cos(2x)+\cos(4x))cos(x)cos(2x)cos(3x)=14=(12)(cos(2x)+cos(4x))
2(\cos(2x)+\cos(4x))=12(cos(2x)+cos(4x))=1
Then from the double angle formula:
cos(4x)=2\cos^2(2x)-1cos(4x)=2cos2(2x)−1
2(\cos(2x)+2\cos^2(2x)-1)=12(cos(2x)+2cos2(2x)−1)=1
4\cos^3(2x)+2\cos^2(2x)-2\cos(2x)-1=04cos3(2x)+2cos2(2x)−2cos(2x)−1=0
Note that the equation comes out with trigonometric functions of 2x2x because of the period being \piπ.
We can factor the zero polynomial:
(2\cos(2x)+1)(2\cos^2(2x)-1)=0(2cos(2x)+1)(2cos2(2x)−1)=0
So either \cos(2x)=-(1/2)cos(2x)=−(12) or else \cos(2x)=\pm(\sqrt(2)/2)cos(2x)=±(√22). This leads to six sets of solutions having period \piπ:
If \cos(2x)=-(1/2)cos(2x)=−(12) then x=\pm(\pi/3)+n\pix=±(π3)+nπ, for any integer nn.
If \cos(2x)=((\sqrt(2))/2)cos(2x)=(√22) then x=\pm(\pi/8)+n\pix=±(π8)+nπ, for any integer nn.
If \cos(2x)=(-(\sqrt(2))/2)cos(2x)=(−√22) then x=\pm((3\pi)/8)+n\pix=±(3π8)+nπ, for any integer nn.