What is the Cartesian form of (-10,(14pi)/8))?

2 Answers
Jan 14, 2018

See a solution process below:

Explanation:

The formula for converting Polar Coordinates to Cartesian coordinates is:

For, (r, theta); x = r xx cos(theta); y = r xx sin(theta)

Substituting the coordinates from the problem gives:

For, (-10, (14pi)/8):

x = -10 xx cos((14pi)/8) = -10 xx 0.707 = -70.7

y = -10 xx sin((14pi)/8) = -10 xx -0.707 = 70.7

(-10, (14pi)/8) =(-70.7, 70.7)

Jan 14, 2018

The cartesian form is (-5sqrt(2), 5sqrt(2)).

Explanation:

To convert polar to rectangular we use:

x=rcos(theta)
y=rsin(theta)

We're given the polar point (-10,(14pi)/8).

First let's simplify (14pi)/8 to (7pi)/4.

From what we have we know:

x=(-10)cos((7pi)/4)
y=(-10)sin((7pi)/4)

(7pi)/4 is a Unit Circle angle so we know its sine and cosine.

cos((7pi)/4)=sqrt(2)/2
sin((7pi)/4)=-sqrt(2)/2

so:

x=(-10)(sqrt(2)/2)=-5sqrt(2)
y=(-10)(-sqrt(2)/2)=5sqrt(2)

so the cartesian form is (-5sqrt(2), 5sqrt(2)).