Question #85f82

3 Answers
Jan 15, 2018

Let.... the first number be #x#
And the second number be #y#
A.T.Q.
#x+y=40rArr(1)#
#x-y=10rArr(2)#
Solve the first one first
#x+y=40#
Subtract y from both sides
#x+cancely-cancely=40-y#
You get
#x=40-y#
Substitute this value in #(2)# equation
#x-y=10#
#40-y-y=10#
#40-2y=10#
Subtract 40 from both sidess
#cancel40-2y-cancel40=10-40#
Which gives us
#-2y=-30#
Minuses cut each other out
#cancel- 2y= cancel- 30#
Which gives us
#2y=30#
Which is
#y=15#
#x=40-y#
#x=40-15#
#x=25#
#25+15=40#
#25-15=10#

Jan 15, 2018

15 and 25

Explanation:

#x = #number 1
#y = #number 2

(1) #x + y = 40#
(2) #x - y = 10#

Equation (2):
#x - y = 10#
#x = 10+y#

Put equation (2) in equation (1):
#x + y = 40#
#10+y + y = 40#
#10 + 2y = 40#
#2y = 30#
#y = 15#

Plug back in one of the initial equation to find x:
#x - y = 10#
#x = 10+y#
#x = 10+15#
#x = 25#

Jan 15, 2018

25 and 15

Explanation:

We can generalize the above statement into two equations:
#x+y=40#
and
#x-y=10#
Now we can solve this problem using simultaneous equations,
#x-y=10#
#x=y+10#
Substitution Time:
#x+y=40#
#(y+10)+y=40#
#2y=30#
#y=15#
To find x, simply substitute y back into any of the equations
#x-y=10#
#x-15=10#
#x=25#