How do you solve #3= \frac { 5x - 4} { 3} + \frac { 3x - 1} { 5}#?

2 Answers
Jan 16, 2018

#x=2#

Explanation:

#3=(5x-4)/3+(3x-1)/5#

Multiply all terms by the LCM of #3# and #5# which is #15#.

#3xx15=15xx(5x-4)/3+15xx(3x-1)/5#

#45=5cancel15xx(5x-4)/(1cancel3)+3cancel15xx(3x-1)/(1cancel5)#

#45=5(5x-4)+3(3x-1)#

Open the brackets and simplify.

#45=25x-20+9x-3#

#45=25x+9x-20-3#

#45=(25x+9x)-(20+3)#

#45=34x-23#

Add #23# to both sides.

#45+23=34x-23+23#

#68=34x#

Divide both sides by #34#.

#68/34=(34x)/34#

#(2cancel68)/(1cancel34)=(cancel34x)/cancel34#

#2=x# or #x=2#

Jan 16, 2018

Please see the step process below;

Explanation:

#3= \frac { 5x - 4} { 3} + \frac { 3x - 1} { 5}#

First Step: Multiply via the LCM, in this case the LCM #= 15#

#15 (3/1) = 15 ((5x - 4)/3) + 15 ((3x - 1)/5)#

Second Step: Simplify

#15 (3/1) = cancel15^5 ((5x - 4)/cancel3) + cancel15^3 ((3x - 1)/cancel5)#

#15(3) = 5 (5x - 4) + 3 (3x - 1)#

#45 = 25x - 20 + 9x - 3#

Third Step: Collecting like terms

#45 = 25x + 9x - 20 - 3#

#45 = 34x - 23#

#45 + 23 = 34x#

#68 = 34x#

Divide both sides by #34#

#68/34 = (34x)/34#

#68/34 = (cancel34x)/cancel34#

#68/34 = x#

#x = 2#