Note that we have several functions in y = x(lnx)^(1/2)y=x(lnx)12: there is the function f(x) = xf(x)=x, which multiplies the composite function g(x) = (lnx)^(1/2)g(x)=(lnx)12. g(x)g(x) is nothing more thant the composite function of h(x) = x^(1/2)h(x)=x12 and j(x) = ln(x)j(x)=ln(x). Therefore, to find the derivative of yy, we will need to use the product and chain rule.
dy/(dx) = d/(dx)[x(lnx)^(1/2)]dydx=ddx[x(lnx)12];
dy/(dx) = d/(dx)(x) . (lnx)^(1/2) + x.d/dx[(lnx)^(1/2)].dydx=ddx(x).(lnx)12+x.ddx[(lnx)12].
Since d/(dx)(x) = 1ddx(x)=1, then:
dy/(dx) = (lnx)^(1/2) + x.d/dx[(lnx)^(1/2)].dydx=(lnx)12+x.ddx[(lnx)12].
Now, the derivative d/dx[(lnx)^(1/2)]ddx[(lnx)12] is where we apply the chain rule. If we take u = ln(x)u=ln(x), then:
d/dx[(lnx)^(1/2)] = d/(du)(u^(1/2)).(du)/(dx)ddx[(lnx)12]=ddu(u12).dudx;
d/dx[(lnx)^(1/2)] = 1/2 u^(-1/2).(1/x)ddx[(lnx)12]=12u−12.(1x).
Now we return to our original variable, xx, since we know the relation between uu and xx:
d/dx[(lnx)^(1/2)] = 1/2 [ln(x)]^(-1/2).(1/x)ddx[(lnx)12]=12[ln(x)]−12.(1x).
Then:
dy/(dx) = (lnx)^(1/2) + x.1/2 [ln(x)]^(-1/2).(1/x)dydx=(lnx)12+x.12[ln(x)]−12.(1x);
dy/(dx) = (lnx)^(1/2) + 1/2 [ln(x)]^(-1/2)dydx=(lnx)12+12[ln(x)]−12.
If you want to, you can also rewrite this expression:
dy/(dx) = sqrt(ln(x)) + 1/(2sqrt(ln(x))dydx=√ln(x)+12√ln(x).
dy/(dx) = (2ln(x) + 1)/(2sqrt(ln(x))dydx=2ln(x)+12√ln(x).