Given: #intcos^2xsinx^2xdx#
The trick is to use a number of identities:
Use the half angle identities to rewrite the integral:
#color(blue)(sin^2x=1/2(1-cos(2x))#
#color(blue)(cos^2x=1/2(1+cos(2x))#
#=int(1/2(1+cos(2x)))(1/2(1-cos(2x)))dx#
Take out the constants: #(1/2*1/2=1/4)#
#=1/4int(1+cos(2x))(1-cos(2x))dx#
#=1/4int1-cos^2(2x)dx#
Use the identity #color(blue)(sin^2x+cos^2x=1=>1-cos^2x=sin^2x#
#=1/4intsin^2(2x)dx#
Use the identity: #color(blue)(sin^2x=(1-cos(2x))/2#
#=1/4int(1-cos(4x))/2dx#
#=1/4*1/2int1-cos(4x)dx#
#=1/8int1-cos(4x)dx#
Integrate each term:
#=1/8int1dx-intcos(4x)dx#
#=1/8[x-1/4sin(4x)]+"C"#
#=1/8x-1/32sin(4x)+"C"#