Question #6b8b3

2 Answers
Jan 18, 2018

#x = -9#

Explanation:

The equation can be rewritten with a #-1# in front of the #(10-x)# instead of just having a negative sign:

#-3(3x+15)-1(10+X)=35#

First, distribute the #-3# to the numbers in the parentheses:

#-9x-45-1(10+x)=35#

Then, distribute the #-1# to the numbers in the parentheses:

#-9x-45-10-x=35#

Now you need to isolate all #x# terms on one side so you can eventually solve for it - to do this, add #45# and #10# to both sides of the equation:

#-9x-45-10-x +45 +10=35 +45 +10#
#-9x-x=35 +45 +10#
#-10x = 90#

Divide both sides by #-10# to get x by itself:

#(-10x)/-10 = 90/(-10)#
#x = -9#

So, #x = -9#.

Jan 18, 2018

#x=-9#

Explanation:

Order of operations is BEDMAS (or PEMDAS)

#-3*(3x+15) + -1*(10 +x) =35#
Multiply each bracket

#(-3*3x + -3*15) + (-1*10 + -1*x) =35#
#(-9x-45) + (-10-1x)=35#

Combine terms
#-9x-1x -45-10=35#
#-10x-55=35#

Solve
#-10x-55+55=35+55#
#-10x=90#

#(-10x)/-10=90/-10#

#x=-9#

Check by substituting into original formula
#-3(3*-9+15)+ -1(10-9)=35#
#-3(-27+15)+ -1(10-9)=35#
#-3(-12)+ -1(1)=35#
#+36+ -1=35#
#35=35# True