Question #42acc

1 Answer
Jan 19, 2018

y'=1/(x+1)^2

Explanation:

Apply the quotient rule:

y'=d/dx(f(x)/g(x))=(d/dx[f(x)]g(x)-d/dx[g(x)]f(x))/(g(x))^2

Given: (2x+1)/(x+1)

Let

f(x)=2x+1=>d/dx[f(x)]=2

g(x)=x+1=>d/dx[g(x)]=1

Substituting into the quotient rule

y'=((2)(x+1)-(1)(2x+1))/(x+1)^2

Simplifying:

y'=((2x+2)-(2x+1))/(x+1)^2=((cancel(2x)+2)-(cancel(2x)+1))/(x+1)^2=1/(x+1)^2