How do you solve this system of equations: 2x _ { 1} - 10x _ { 2} + 7x _ { 3} = 7, 6x _ { 1} - x _ { 2} + 5x _ { 3} = - 2 and - 4x _ { 1} + 8x _ { 2} - 3x _ { 3} = - 222x1−10x2+7x3=7,6x1−x2+5x3=−2and−4x1+8x2−3x3=−22?
1 Answer
Explanation:
This is a 3-variable system of equations. Values of
Pair 1:
eq.1->2x_1-10x_2+ 7x_3=7eq.1→2x1−10x2+7x3=7
eq.2->6x_1-x_2+5x_3=-2eq.2→6x1−x2+5x3=−2 Pair 2:
eq.2->->6x_1-x_2+5x_3=-2eq.2→→6x1−x2+5x3=−2
eq.3->->-4x_1+8x_2-3x_3=-22eq.3→→−4x1+8x2−3x3=−22
Now, solve the
eq.1->color(red)(2x_1)-color(blue)(10x_2)+color(green)( 7x_3=color(black)(7 "}"-3eq.1→2x1−10x2+7x3=7}−3
eq.2->color(red)(6x_1)-color(blue)(x_2)+color(green)(5x_3)=color(black)(-2)eq.2→6x1−x2+5x3=−2 These equations formed as shown below.
eq.1->color(red)(cancel(-6x_1)+color(blue)(30x_2)-color(green)(21x_3)=color(black)(-21)
eq.2->color(red)(cancel(6x_1)-color(blue)(x_2)+color(green)(5x_3)=color(black)(-2) The derived equation is:
eq.4->color(blue)(29x_2)-color(green)(16x_3)=-color(black)(23)
Then, solve the
eq.2->color(red)(6x_1)-color(blue)(x_2)+color(green)( 5x_3=color(black)(-2 "} " 2
eq.3->color(red)(-4x_1)+color(blue)(8x_2)-color(green)(3x_3)=color(black)(-22 "} " 3 These equations formed as shown below.
eq.2->cancel(color(red)(12x_1))-color(blue)(2x_2)+color(green)( 10x_3=color(black)(-4)
eq.3->cancel(color(red)(-12x_1))+color(blue)(24x_2)-color(green)(9x_3)=color(black)(-66) The derived equation is:
eq.5->color(blue)(22x_2)+color(green)(x_3)=-color(black)(70)
Now, solve simultaneously eq.4 and eq.5 to find either of the remaining variables.
eq.4->color(blue)(29x_2)-color(green)(16x_3)=-color(black)(23)
eq.5->color(blue)(22x_2)+color(green)(x_3)=-color(black)(70)
Multiply eq.5 by 16 to eliminate the term with
eq.4->color(blue)(29x_2)-color(green)(16x_3)=-color(black)(23)
eq.5->color(blue)(22x_2)+color(green)(x_3)=-color(black)(70) "} "16
This can be computed as shown below.
eq.4->color(blue)(29x_2)-cancel(color(green)(16x_3))=-color(black)(23)
eq.5->color(blue)(352x_2)+cancel(color(green)(16x_3))=-color(black)(1120)
Now, simplify and find the value of
381x_2=-1143 ; divide bothe sides by 381 to isolatex
(cancel(381)x_2)/cancel(381)=-1143/382
color(red)(x_2=-3
Knowing the value of
22x_2+x_3=-70
22(-3)+x_3=-70
-66+x_3=-70
x_3=-70+66
color(red)(x_3=-4)
Finally, find the value of
where:
x_2=-3
x_3=-4
2x_1-10x_2+ 7x_3=7
2x_1-10(-3)+7(-4)=7
2x_1+30-28=7
2x_1+2=7
2x_1=7-2
2x_1=5
x_1=5/2
color(red)(x_1=2.5)
Checking:
eq.1->2x_1-10x_2+ 7x_3=7
eq.1->2(2.5)-10(-3)+7(-4)=7
eq.1->5+30-28=7
eq.1->5+2=7
eq.1->7=7
eq.2->6x_1-x_2+5x_3=-2
eq.2->6(2.5)-(-3)+5(-4)=-2
eq.2->15+3-20=-2
eq.2->18-20=-2
eq.2->-2=-2
eq.3->->-4x_1+8x_2-3x_3=-22
eq.3->-4(2.5)+8(-3)-3(-4)=-22
eq.3->-10-24+12=-22
eq.3->-34+12=-22
eq.3->-22=-22