If x^2 + x +1=0x2+x+1=0 find the value of (x+1/x)^3 + (x^2+1/x^2)^3...(x^100+1/x^100)^3?

3 Answers
Jan 19, 2018

197

Explanation:

(a+b)^3 = a^3 + 3 a^2 b + 3 a b^2 + b^3
=> (x^n + 1/x^n)^3 = x^(3n) + 3 x^n + 3x^-n + x^(-3n)
x^3 - 1 = (x-1)(x^2+x+1) = (x-1)*0 = 0 => x^3 = 1
=> x^(3n) + x^(-3n) = 1^n + 1/(1^n) = 2
=> (x^n+1/(x^n))^3 = 2 + 3 (x^n + x^-n)
"sum from n=1 till n=100 : "
sum = 200 + 3 [ (x^101 - 1)/(x-1) + (x^-101 - 1)/(1/x-1) ] - 6
= 194 + 3 [ x^101 - 1 + x - x^-100 ]/(x-1)
= 197 + 3 [ x^101 - x^-100 ]/(x-1)
= 197 + 3 [ (x^3)^33 * x^2 - (x^-3)^34 * x^2 ]/(x-1)
= 197 + 3 [ x^2 - x^2 ]/(x-1)
= 197 + 0
= 197

"With complex numbers, one can proceed as follows."
x^3 = 1 => x = "cuberoot(1)" = cos(pi/3) + i sin(pi/3)
"or " cos(2pi/3) + i sin(2pi/3).
"Take e.g. "x = cos(2pi/3) + i sin(2pi/3) = e^(2 pi i/3).
"Then "x^n + x^-n = 2 cos(2 n pi / 3)
"So we have"
(2 cos(120°))^3 + (2 cos(240°))^3 + (2 cos(360°))^3 +
+ (2 cos(120°))^3 + ... + (2 cos(120°))^3.
= -1 -1 + 8 - 1 - 1 + 8 - .... - 1
= 6*33 - 1
= 197

Jan 19, 2018

197

Explanation:

If x^2 + x +1=0

find the value of

(x+1/x)^3 + (x^2+1/x^2)^3+cdots+(x^100+1/x^100)^3?

Solving x^2 + x +1=0 for x we have

x = 1/2(-1pm i sqrt3)= e^(pmi phi)

with phi =pm (2pi)/3 then

with x = e^(i phi)

sum_(k=1)^n (x^k + 1/x^k)^3 = sum_(k=1)^n (e^(i k phi) + e^(-i k phi))^3 = sum_(k=1)^n(e^(3k i phi)+e^(-3k i phi)) +3sum_(k=1)^n(e^(i k phi)+e^(-i k phi))

but

sum_(k=1)^n(e^(3k i phi)+e^(-3k i phi)) = sum_(k=1)^n(e^(2k i pi)+e^(-2k i pi)) = 2n and

3sum_(k=1)^n(e^(i k phi)+e^(-i k phi)) = 3((e^(i(n+1)phi)-1)/(e^(i phi)-1)-1+(e^(-i(n+1)phi)-1)/(e^(-i phi)-1)-1)

here with n = 100, phi = (2pi)/3

(e^(i(n+1)phi)-1)/(e^(i phi)-1)+(e^(-i(n+1)phi)-1)/(e^(-i phi)-1) = -1

then finally

sum_(k=1)^100 (x^k + 1/x^k)^3 =200-3=197

Jan 19, 2018

197

Explanation:

Given:

x^2+x+1 = 0

We want to evaluate:

(x+1/x)^3+(x^2+1/x^2)^3+...+(x^100+1/x^100)^3

Without loss of generality, let:

x = omega = -1/2+sqrt(3)/2i

The only other option is the complex conjugate bar(omega) = omega^2 = 1/omega and the result is going to be real valued anyway.

Note that:

omega^3-1 = (omega-1)(omega^2+omega+1) = 0

So:

omega^3 = 1

Let's look at the first few binomials:

omega+1/omega = omega+bar(omega) = -1

omega^2+1/omega^2 = bar(omega)+omega = -1

omega^3+1/omega^3 = 1+1 = 2

These three values repeat cyclically.

So the sum is expressible as:

(-1-1+8)+(-1-1+8)+...+(-1-1+8)-1 = 33*6-1 = 197