Question #49b10

1 Answer
Jan 20, 2018

#2sqrt(3)cos(theta + pi/3)#

Explanation:

The general form is #a*cos(theta)-b*sin(theta) = R*cos(theta+alpha)#, where #R = sqrt(a^2+b^2)# and #alpha=tan^-1(b/a)#.

First calculate #R = sqrt(a^2+b^2)= sqrt((sqrt(3))^2+(3)^2)=sqrt(12)=2sqrt(3)#.

Next calculate #alpha=tan^-1(b/a) = tan^-1(3/sqrt(3))=tan^(-1)(sqrt(3)) = pi/3#.

So #sqrt(3)cos(theta)-3sin(theta) = 2sqrt(3)cos(theta + pi/3)#

See this video for additional explanation.