How do you solve #lim_x->pi/4 (tanx-cotx)/(x-pi/4)# ?

3 Answers

L'Hospital Rule yields:

#lim_(x->pi/4)(tanx-cotx)/(x-pi/4)=4#

Explanation:

by L'Hospital rule, which states that: when you get an indeterminate form after assuming that #lim_(x->c)f(x)=f(c)#, then #lim_(x->c)(g(x))/(h(x))=(g'(c))/(h'(c))#

#=> lim_(x-> pi/4) ((secx)^2+ (cscx)^2)/1#

placing values of #x=pi/4#

#= ( (sqrt(2)) ^2 + (sqrt(2))^2 ) / 1 = 4/1 = 4 #

you can find the value of the limit as now it is not in the indertiminate form

hope you find it helpful :)

Aug 14, 2018

Here is a Solution without use of the L'Hospital's Rule.

Explanation:

Let, #x=pi/4+y#.

#:." As "x to pi/4, y to 0#.

Now, #tanx-cotx=sinx/cosx-cosx/sinx#,

#=(sin^2x-cos^2x)/(sinxcosx)#,

#={-2(cos^2x-sin^2x)}/{2sinxcosx}#,

#=(-2cos2x)/(sin2x)#,

#=-2cot2x#.

#:." The Reqd. Lim."=lim_(x to pi/4)(-2cot2x)/(x-pi/4)#,

#=lim_(y to 0){-2cot(2(pi/4+y))}/y#,

#=lim_(y to 0){-2cot(pi/2+2y)}/y#,

#=lim_(y to 0){-2(-tan2y)}/y#,

#=lim_(y to 0){2*(tan2y)/(2y)*2}#.

Knowing that, #lim_(theta to 0)tantheta/theta=1#,

#"The Lim."=4*1=4#.

Aug 14, 2018

Please see below.

Explanation:

Solution without L'Hospital Rule :

Let,

#L=lim_(x to pi/4) (tanx-cotx)/(x-pi/4)#

Here,

#tanx-cotx=sinx/cosx-cosx/sinx=(sin^2x-cos^2x)/(sinxcosx)#

#:.tanx-cotx=-(cos^2x-sin^2x)/(2sinxcosx)xx2#

#:.tanx-cotx=-2(cos2x)/(sin2x)=-2cot2x#

So,

#L=lim_(x to pi/4)(-2cot2x)/((x-pi/4))=-2lim_(x to pi/4)(cot2x)/((x-pi/4))#

Let , #x-pi/4=theta=>x=pi/4+theta=>2x=pi/2+2theta#

#and x->pi/4=>theta->0#

#:.L=-2lim_(thetato0)(cot(pi/2+2theta))/theta=-2lim_(theta to0)(-tan2theta)/theta#

#:.L=2lim_(theta to0)(tan2theta)/(2theta )xx2=2(1)xx2=4#