sf(X^(n+)) is oxidised by the sf(MnO_4^-):
sf(X^(n+)rarrXO_3^-)
The change in oxidation state is:
sf(+nrarr+5)
The sf(MnO_4^-) is reduced:
sf(MnO_4^(-)+8H^(+)+5erarrMn^(2+)+4H_2O" "color(red)((1)))
The change in oxidation state is:
sf(+7rarr+2)
We find the ratio in moles by which they react:
sf((nX^(n+))/(nMnO_4^-)=(2.68x10^(-3))/(1.61xx10^(-3))=1.66=5/3)
:.sf(nX^(n+):nMnO_4^(-)=5:3)
We can build up the stoiciometric equation:
sf(5X^(n+)color(white)(xxxx)+color(white)(xxxx)3MnO_4^(-)rarrcolor(white)(xxx)5XO_3^(-)color(white)(xxx)+3Mn^(2+)
sf(5xx(+n)color(white)(xxxxxx)3xx+7color(white)(xxxxxx)5xx+5color(white)(xxx)3xx+2)
sf(+5ncolor(white)(xxxxxxxxxxx)+21color(white)(xxxxxxxx)+25color(white)(xxxxxx)+6)
color(white)(xxxxxxxxxxxxxxx)stackrel(color(white)(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx))(color(blue)(rarr)
color(white)(xxxx)stackrel(color(white)(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx))(color(red)(rarr)
You can see that the net oxidation state of Mn has gone down from +21 to +6.
To effect this change will require 21 - 6 = 15 moles of electrons.
These will be provided by sf(5X^(n+)) going up to sf(5XO_3^-)
:. we can say: sf(25-5n=15)
From which sf(n=2)
The 1/2 equation for the oxidation becomes:
sf(X^(2+)+3H_2OrarrXO_3^(-)+6H^++3e" "color(red)((2)))
To get the electrons to balance we multiply sf(color(red)((1)) by 3 and sf(color(red)((2)) by 5 then addrArr
sf(5X^(2+)+cancel(15H_2O)+3MnO_4^(-)+cancel(24H^+)+cancel(15)erarr5XO_3^(-)+cancel(30H^(+))+cancel(15e)+3Mn^(2+)+cancel(12H_2O))
This cancels down to:
sf(5X^(2+)+3H_2O+3MnO_4^(-)rarr5XO_3^(-)+6H^(+)+3Mn^(2+))
As you can see, charge and mass is conserved.