Prove cos(x)+sin(x)tan(x)=sec(x)?

2 Answers
Jan 22, 2018

cos(x)+sin(x)sin(x)/cos(x) (since tan x =sinx/cosx)

Explanation:

cos(x)+(sin^2x/cosx)
Taking lcm,
(cos^2x + sin^2x)/cosx
=1/cos (x) (since cos^2x+sin^2x =1)
=secx
Hence proved

Jan 22, 2018

RHS:

secx=1/cosx

LHS:

cosx+sinxtanx

=cosx+sinx(sinx/cosx)

=cosx+(sin^2x)/cosx

=(cosx*cosx)/(1*cosx)+(sin^2x)/cosx

=(cos^2x)/(cosx)+(sin^2x)/cosx

=(cos^2x+sin^2x)/cosx

sin^2x+cos^2x-=1

=1/cosx

=secx

LHS=RHS