Question #90ab5

1 Answer
Jan 23, 2018

lim_(n->oo)a_n=2

Explanation:

a_(n+1)=sqrt(2+a_n)

Assuming that a_n exists when n->oo, then
lim_(n->oo)a_(n+1)=lim_(n->oo)sqrt(2+a_n)
lim_(n->oo)a_n=lim_(n->oo)sqrt(2+a_n)
lim_(n->oo)a_n^2=lim_(n->oo)2+a_n
lim_(n->oo)a_n^2-a_n-2=0
lim_(n->oo)a_n=(1±sqrt(1^2+4*2))/2=(1±3)/2

However, a_n>0 for all n. Thus,
lim_(n->oo)a_n=2