Here is the chemical reaction - Ca(NO3)2 + (NH4)3PO4 --> Double displacement follows... If you start with 10.25 mL of .553M Ca(NO3)2 soln, how many moles of calcium nitrate do you have in the soln? Also a part 2 in the question.

If you are able to figure that one out and still have extra time, how many grams of the solid product is amde when 3.45 mL of .553M Ca(NO3)2 reacts with excess 1.239 (NH4)3PO4 soln?

1 Answer
Jan 23, 2018

Please refer to the solving processes below...

Explanation:

A. "1st Condition"A.1st Condition:

Write and balance the equation.

3Ca(NO_3)_2(aq)+2(NH_4)_3PO_4(aq-Ca_3(PO_4)_2(s)+6NH_4NO_3(aq)3Ca(NO3)2(aq)+2(NH4)3PO4(aqCa3(PO4)2(s)+6NH4NO3(aq)

Given the molarity(M)(M) and the volume(V)(V) of the solution, the number of moles(eta)(η) can be calculated using the formula;

M=eta/VM=ηV

Rearrange the formula to isolate the etaη and pulg in values as shown below

eta_(Ca(NO_3)_2)=MxxVηCa(NO3)2=M×V

where:

M=(0.553mol)/(L)M=0.553molL
V=10.5cancel(ml)xx(1L)/(1000cancel(ml))=0.0105L

eta_(Ca(NO_3)_2)=(0.553mol)/cancel(L)xx0.0105cancel(L)

eta_(Ca(NO_3)_2)=0.00657mol

B. "2nd Condition":

Given the volume(V) and the molarity, the number of moles(eta) can be calculated as;

eta_(Ca(NO_3)_2)=MxxV

where:

M=(0.553mol)/(L)
V=3.45mlxx(1L)/(1000ml)=0.00345L

eta_(Ca(NO_3)_2)=(0.553mol)/cancel((L))xx0.00345cancel(L)

eta_(Ca(NO_3)_2)=0.00191mol

Now, find the mole of the solid substance (Ca_3(PO_4)_2) in the reaction. Molar conversion is possible with reference to the balanced equation for the molar ratio; i.e.,

eta_(Ca_3(PO_4)_2)=0.00191cancel(mol Ca(NO_3)_2)xx(1mol Ca_3(PO_4)_2)/(3cancel(molCa(NO_3)_2))

eta_(Ca_3(PO_4)_2)=0.000637mol

Find the molar mass (Mm) of the involved compound. Value can be traced in the periodic table; i.e.,

Mm_(Ca_3(PO_4)_2)=(310.18g)/(mol)

Now, find the mass of Ca_3(PO_4)_2 by multiplying its molar mass to its number of moles as computed earlier.

m_(Ca_3(PO_4)_2)=etaxxMm

m_(Ca_3(PO_4)_2)=0.000637cancel(mol)xx(310.18g)/cancel((mol))

m_(Ca_3(PO_4)_2)=0.197g