Here is the chemical reaction - Ca(NO3)2 + (NH4)3PO4 --> Double displacement follows... If you start with 10.25 mL of .553M Ca(NO3)2 soln, how many moles of calcium nitrate do you have in the soln? Also a part 2 in the question.
If you are able to figure that one out and still have extra time, how many grams of the solid product is amde when 3.45 mL of .553M Ca(NO3)2 reacts with excess 1.239 (NH4)3PO4 soln?
If you are able to figure that one out and still have extra time, how many grams of the solid product is amde when 3.45 mL of .553M Ca(NO3)2 reacts with excess 1.239 (NH4)3PO4 soln?
1 Answer
Please refer to the solving processes below...
Explanation:
Write and balance the equation.
3Ca(NO_3)_2(aq)+2(NH_4)_3PO_4(aq-Ca_3(PO_4)_2(s)+6NH_4NO_3(aq)3Ca(NO3)2(aq)+2(NH4)3PO4(aq−Ca3(PO4)2(s)+6NH4NO3(aq)
Given the molarity
M=eta/VM=ηV
Rearrange the formula to isolate the
eta_(Ca(NO_3)_2)=MxxVηCa(NO3)2=M×V where:
M=(0.553mol)/(L)M=0.553molL
V=10.5cancel(ml)xx(1L)/(1000cancel(ml))=0.0105L
eta_(Ca(NO_3)_2)=(0.553mol)/cancel(L)xx0.0105cancel(L)
eta_(Ca(NO_3)_2)=0.00657mol
Given the volume
eta_(Ca(NO_3)_2)=MxxV where:
M=(0.553mol)/(L)
V=3.45mlxx(1L)/(1000ml)=0.00345L
eta_(Ca(NO_3)_2)=(0.553mol)/cancel((L))xx0.00345cancel(L)
eta_(Ca(NO_3)_2)=0.00191mol
Now, find the mole of the solid substance
eta_(Ca_3(PO_4)_2)=0.00191cancel(mol Ca(NO_3)_2)xx(1mol Ca_3(PO_4)_2)/(3cancel(molCa(NO_3)_2))
eta_(Ca_3(PO_4)_2)=0.000637mol
Find the molar mass
Mm_(Ca_3(PO_4)_2)=(310.18g)/(mol)
Now, find the mass of
m_(Ca_3(PO_4)_2)=etaxxMm
m_(Ca_3(PO_4)_2)=0.000637cancel(mol)xx(310.18g)/cancel((mol))
m_(Ca_3(PO_4)_2)=0.197g