How do you solve #-5( 5+ 4a ) = 115#?

1 Answer
Jan 25, 2018

#a=-7#

Explanation:

Begin by distributing #-5# to each term of #(5+4a)#

#(-5*5)+(-5*4a)=115#

#(-25)+(-20a)=115#

#-25-20a=115#

Add #25# to both sides:

#-25+25-20a=115+25#

#0-20a=140#

#-20a=140#

Divide both sides by #-20#

#cancel(-20)/cancel(-20)a=140/-20#

#a=-7#