Question #425b9
1 Answer
Explanation:
- Write and balance the equation
N_2H_4(l)+O_2(g)->N_2(g)+2H_2O(g)N2H4(l)+O2(g)→N2(g)+2H2O(g) - Find the molar masses of the two reactants. Refer to the periodic table for the relative atomic masses of elements composing them.
N_2H_4=(32.05g)/(mol)N2H4=32.05gmol
O_2=(32.00g)/(mol)O2=32.00gmol - Given the masses of the reactants, find individual number of moles.
ul(etaN_2H_4):
=20.0cancel(gN_2H_4)xx(1molN_2H_4)/(32.06cancel(gN_2H_4))=0.624molN_2H_4
ul(etaO_2):
=20.0cancel(gO_2)xx(1molO_2)/(32.00cancel(gO_2))=0.625molO_2 - Now, find the limiting reactant by multiplying each involved compound to its molar ratio; i.e.,
color(red)ul(etaN_2H_4 " available"=0.624mol):
=0.624cancel(molN_2H_4)xx(1molO_2)/(1cancel(molN_2H_4))=0.624molO_2 This means that
0.624molN_2H_4-=0.624molO_2 , but
(etaO_2 " available")/(0.625molO_2)>(etaO_2 " required")/(0.624molO_2)
color(blue)ul(etaO_2 " available"=0.625mol):
=0.625cancel(molO_2)xx(1molN_2H_4)/(1cancel(molO_2))=0.625molN_2H_4
This means that
0.625molO_2-=0.625molN_2H_4
(etaN_2H_4" available")/(0.624molN_2H_4)<(etaN_2H_4 " required")/(0.625molN_2H_4) Therefore;
color(red)(etaN_2H_4 " is the limiting reactant")
5.Now, find the products in grams using the limiting reactant and the mole ratios of the involved compounds as described in the balanced equation above; i.e.,
ul(N_2 " produced")
=0.624cancel(molN_2H_4)xx(1molN_2)/(1cancel(molN_2H_4))=0.624molN_2, then
=0.624cancel(molN_2)xx(28.02gN_2)/(1cancel(molN_2))=17.5gN_2
ul(H_2O " produced")
=0.624cancel(molN_2H_4)xx(2cancel(molH_2O))/(1cancel(molN_2H_4))=1.25molH_2O
=1.25molH_2Oxx(18gH_2O)/(1cancel(molH_2O))=22.5gH_2O