The absolute value function takes any term and transforms it to its non-negative form. Therefore, we must solve the term within the absolute value function for both its negative and positive equivalent.
Solution 1:
6/(3z + 6) = -863z+6=−8
6/(3z + 6) = -8/163z+6=−81
(3z + 6)/6 = -1/83z+66=−18
color(red)(6) xx (3z + 6)/6 = color(red)(6) xx -1/86×3z+66=6×−18
cancel(color(red)(6)) xx (3z + 6)/color(red)(cancel(color(black)(6))) = -color(red)(6)/8
3z + 6 = -3/4
3z + 6 - color(red)(6) = -3/4 - color(red)(6)
3z + 0 = -3/4 - (4/4 xx color(red)(6))
3z = -3/4 - 24/4
3z = -27/4
(3z) xx 1/color(red)(3) = -27/4 xx 1/color(red)(3)
(color(red)(cancel(color(black)(3)))z) xx 1/cancel(color(red)(3)) = -(color(red)(cancel(color(black)(27)))9)/4 xx 1/cancel(color(red)(3))
z = -9/4
Solution 2:
6/(3z + 6) = 8
6/(3z + 6) = 8/1
(3z + 6)/6 = 1/8
color(red)(6) xx (3z + 6)/6 = color(red)(6) xx 1/8
cancel(color(red)(6)) xx (3z + 6)/color(red)(cancel(color(black)(6))) = color(red)(6)/8
3z + 6 = 3/4
3z + 6 - color(red)(6) = 3/4 - color(red)(6)
3z + 0 = 3/4 - (4/4 xx color(red)(6))
3z = 3/4 - 24/4
3z = 21/4
(3z) xx 1/color(red)(3) = -21/4 xx 1/color(red)(3)
(color(red)(cancel(color(black)(3)))z) xx 1/cancel(color(red)(3)) = -(color(red)(cancel(color(black)(21)))7)/4 xx 1/cancel(color(red)(3))
z = -7/4
The Solution Is:
z = {-9/4, -7/4}