Question #15c3f

3 Answers
Jan 27, 2018

x^3+3x^2-4

Explanation:

(x-1)(x+2)(x+2)

(x+2)^2(x-1)

Repeated expansion now helps.

=(x^2+4x+4)(x-1)

=x^3-x^2+4x^2-4x+4x-4

=x^3+3x^2-cancel(4x)+cancel(4x)-4

=x^3+3x^2-4

Jan 27, 2018

x^3+3x^2-4

Explanation:

color(blue)((x-1))color(green)( (x+2) )color(red)((x+2)

Consider just the first two pairs of brackets.

Multiply everything inside the green brackets by everything in the blue.

color(green)(color(blue)(x)(x+2)color(white)("ddd") color(blue)(-1)(x+2))

Notice the way the minus sign followed the 1

x^2+2xcolor(white)("ddd")-x-2

x^2+x-2color(white)("d")
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So putting it all back together we have:

color(purple)((x^2+x-2)) color(red)( (x+2))

Multiply everything in the red brackets by everything in the purple.

color(red)(color(purple)(x^2)(x+2)color(white)("ddd")color(purple)(+x)(x+2)color(white)("ddd")color(purple)(-2)(x+2) )

x^3+2x^2color(white)("dddd")+x^2+cancel(2x)color(white)("dd")cancel(-2x)-4

x^3+3x^2-4

Jan 27, 2018

x^3+3x^2-4

Explanation:

"the expansion of factors in the form "

(x+a)(x+b)(x+c)

=x^3+(a+b+c)x^2+(ab+bc+ac)x+abc

"here "a=-1,b=c=2

rArr(x-1)(x+2)(x+2)

=x^3+(-1+2+2)x^2+(-2+4-2)x+( -1.2.2)

=x^3+3x^2-4