Show that #Sin3theta= 3sin theta–4sin³theta# ?

1 Answer

We have that

# sin(3theta)=sin(2theta+theta)=sin(2theta)*cos(theta)+cos(2theta)*sin(theta)=2sintheta*cos^2theta+sintheta*(1-2sin^2theta)=2*sintheta*(1-sin^2theta)+sintheta*(1-2sin^2theta)=3*sintheta-4sin^3theta #

We used the following trigonometric identities

#sin(x+y)=sinx*cosy+cosx*siny#

#sin(2x)=2sinx*cosx#

#cos(2x)=1-2sin^2x#

#cos^2x=1-sin^2x#